THE EFFECT OF CATECHINS AND NANOCHITOSAN ON REDUCING BACTERIAL COLONIES AND MATERIAL PERFORMANCE IN PACKAGING FILMS BASED ON PLA/PCL BLEND

Authors

  • Suryani Salim Department of Chemical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, Aceh 24301, Indonesia
  • Teuku Rihayat Department of Chemical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, Aceh 24301, Indonesia
  • Fitria Department of Dermato Venereology, Medical Faculty, Syiah Kuala University, Aceh 23111, Indonesia
  • Aida Safitri Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Kota Medan 20222, Indonesia

DOI:

https://doi.org/10.29121/granthaalayah.v11.i9.2023.5334

Keywords:

PLA, PCL, Antimicrobial Activity, Catechin, Mechanical Properties

Abstract [English]

The extensive utilization of petrochemical polymer-based plastics has led to significant environmental challenges. A viable solution involves the incorporation of high-quality biomaterials as a substitute for traditional plastics. In pursuit of this goal, Polylactic Acid (PLA) and Polycaprolactone (PCL) biopolymers were combined with catechin and nano chitosan additives to innovate food packaging materials. The process involved the utilization of a screw extruder for mixing and melting. The sample formulation employed a combination of PLA polymer (9.5 g) and PCL (0.5 g). The variations in catechin (0%, 5%, 10%, 15%, 20%, 25%, and 30%), while nano chitosan was added in concentrations (5%, 10%, 15%, 20%, 25%, and 30%). The highest tensile strength recorded, at 45.10 MPa, was achieved by sample SA4, as indicated by tensile strength testing, FTIR analysis, and colony reduction. FT-IR analysis revealed the presence of functional groups, namely N-H, C-H, C=O, and C-O, signifying successful interactions between the PLA/PCL matrix blend and the additive components of nanochitosan and catechins. Remarkably, sample SA4 exhibited a remarkable 96% reduction in S. aureus bacterial colonies following 24 hours of storage.

Downloads

Download data is not yet available.

References

An, L., Perkins, P., Yi, R., & Ren, T. (2023). Development of Polylactic Acid Based Antimicrobial Food Packaging Films with N-halamine Modified Microcrystalline Cellulose. International Journal of Biological Macromolecules, 242. https://doi.org/10.1016/j.ijbiomac.2023.124685. DOI: https://doi.org/10.1016/j.ijbiomac.2023.124685

Bianchi, M., Dorigato, A., Morreale, M., & Pegoretti, A. (2023). Evaluation of the Physical and Shape Memory Properties of Fully Biodegradable Poly (Lactic Acid) (PLA)/Poly (Butylene Adipate Terephthalate) (PBAT) Blends. Polymers, 15(4), 881. https://doi.org/10.3390/polym15040881. DOI: https://doi.org/10.3390/polym15040881

Chia, Z. C., Chen, Y. L., Chuang, C. H., Hsieh, C. H., Chen, Y. J., Chen, K. H., Huang, T.-C., M.-C., Chen, & Huang, C. C. (2023). Polyphenol-Assisted Assembly of Au-Deposited Polylactic Acid Microneedles for SERS Sensing and Antibacterial Photodynamic Therapy. Chemical Communications, 59(42), 6339-6342. https://doi.org/10.1039/d3cc00733b. DOI: https://doi.org/10.1039/D3CC00733B

De la Rosa-Ramírez, H., Aldas, M., Ferri, J. M., Pawlak, F., López-Martínez, J., & Samper, M. D. (2023). Control of Biodegradability Under Composting Conditions and Physical Performance of Poly (Lactic Acid) Based Materials Modified with Phenolic-Free Rosin Resin. Journal of Polymers and the Environment, 1-15. https://doi.org/10.1007/s10924-023-02956-1. DOI: https://doi.org/10.1007/s10924-023-02956-1

Edward, M. S. G., Louis, A. C. F., Srinivasan, H., & Venkatachalam, S. (2022). A Mechanochemical Approach for Synthesizing Almond Shell Nanoparticles and their Potential Application on the Enhancement of Polylactic Acid Film Properties. Iranian Polymer Journal, 31(12), 1523-1535. https://doi.org/10.1007/s13726-022-01099-9. DOI: https://doi.org/10.1007/s13726-022-01099-9

Ertek, D. A., Sanli, N. O., Menceloglu, Y. Z., & Seven, S. A. (2023). Environmentally Friendly, Antibacterial Materials from Recycled Keratin Incorporated Electrospun PLA Films with Tunable Properties. European Polymer Journal, 185. https://doi.org/10.1016/j.eurpolymj.2022.111804. DOI: https://doi.org/10.1016/j.eurpolymj.2022.111804

Ganewatta, M. S., Wang, Z., & Tang, C. (2021). Chemical Syntheses of Bioinspired and Biomimetic Polymers Toward Biobased Materials. Nature Reviews. Chemistry, 5(11), 753–772. https://doi.org/10.1038/s41570-021-00325-x. DOI: https://doi.org/10.1038/s41570-021-00325-x

Gharehasanloo, M., Anbia, M., & Yazdi, F. (2023). Preparation of Superhydrophobic, Green, and Eco-Friendly Modified Polylactic Acid Foams for Separation Oil from Water. International Journal of Biological Macromolecules, 240. https://doi.org/10.1016/j.ijbiomac.2023.124159. DOI: https://doi.org/10.1016/j.ijbiomac.2023.124159

Hu, H., Yong, H., Yao, X., Chen, D., Kan, J., & Liu, J. (2022). Effect of Starch Aldehyde-Catechin Conjugates on the Structural, Physical and Antioxidant Properties of Quaternary Ammonium Chitosan/Polyvinyl Alcohol Films. Food Hydrocolloids, 124. https://doi.org/10.1016/j.foodhyd.2021.107279. DOI: https://doi.org/10.1016/j.foodhyd.2021.107279

Iglesias-Montes, M. L., Soccio, M., Siracusa, V., Gazzano, M., Lotti, N., Cyras, V. P., & Manfredi, L. B. (2022). Chitin Nanocomposite Based on Plasticized Poly (Lactic Acid) / Poly (3-hydroxybutyrate) (PLA/PHB) Blends as Fully Biodegradable Packaging Materials. Polymers, 14(15). https://doi.org/10.3390/polym14153177. DOI: https://doi.org/10.3390/polym14153177

Jiang, L., Liu, F., Wang, F., Zhang, H., & Kang, M. (2022). Development and Characterization of Zein-Based Active Packaging Films Containing Catechin Loaded β-cyclodextrin Metal-Organic Frameworks. Food Packaging and Shelf Life, 31. https://doi.org/10.1016/j.fpsl.2022.100810. DOI: https://doi.org/10.1016/j.fpsl.2022.100810

Kumari, S. V. G., Pakshirajan, K., & Pugazhenthi, G. (2022). Recent Advances and Future Prospects of Cellulose, Starch, Chitosan, Polylactic Acid and Polyhydroxyalkanoates for Sustainable Food Packaging Applications. International Journal of Biological Macromolecules, 221, 163-182. https://doi.org/10.1016/j.ijbiomac.2022.08.203. DOI: https://doi.org/10.1016/j.ijbiomac.2022.08.203

Luckachan, G. E., & Pillai, C. K. S. (2011). Biodegradable Polymers-A Review on Recent Trends and Emerging Perspectives. Journal of Polymers and the Environment, 19(3), 637-676. https://doi.org/10.1007/s10924-011-0317-1. DOI: https://doi.org/10.1007/s10924-011-0317-1

Martinez Villadiego, K., Arias Tapia, M. J., Useche, J., & Escobar Macías, D. (2021). Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review. Journal of Polymers and the Environment, 1-17. https://doi.org/10.1007/s10924-021-02207-1. DOI: https://doi.org/10.1007/s10924-021-02207-1

Moreno-Serna, V., Oyarzún, C., Ulloa-Flores, M. T., Rivas, L., Sepúlveda, F. A., Loyo, C., Toro, E.L., & Zapata, P. A. (2023). Venus Antiqua Clamshell-Derived Calcium Oxide Nanoparticles for the Preparation of PLA/d-Limonene/CaO Nanocomposites with Antimicrobial Properties. ACS Sustainable Chemistry & Engineering, 11(29), 10755-10766. https://doi.org/10.1021/acssuschemeng.3c01358. DOI: https://doi.org/10.1021/acssuschemeng.3c01358

Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., & Beas, I. N. (2020). Environmental Impact of Food Packaging Materials : A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Materials (Basel, Switzerland), 13(21), 4994. https://doi.org/10.3390/ma13214994. DOI: https://doi.org/10.3390/ma13214994

Ranjbar-Mohammadi, M., & Nouri, M. (2022). Production and in Vitro Analysis of Catechin Incorporated Electrospun Gelatin/Poly (Lactic Acid) Microfibers for Wound Dressing Applications. Journal of Industrial Textiles, 51(5_suppl), 7529S-7544S. https://doi.org/10.1177/15280837211060883. DOI: https://doi.org/10.1177/15280837211060883

Rihayat, T., Aidy, N., Safitri, A., & Aida, A. (2022). Synthesis of Poly Lactic Acid (PLA)/Nanochitosan–Based for Bioscaffold Materials with the Addition of Zn-Curcumin. Materials Today : Proceedings, 63, S526-S531. https://doi.org/10.1016/j.matpr.2022.04.932. DOI: https://doi.org/10.1016/j.matpr.2022.04.932

Rihayat, T., Hadi, A. E., Aidy, N., Safitri, A., Siregar, J. P., Cionita, T., Irawan, A. P., et al. (2021). Biodegradation of Polylactic Acid-Based Bio Composites Reinforced with Chitosan and Essential Oils as Anti-Microbial Material for Food Packaging. Polymers, 13(22). http://dx.doi.org/10.3390/polym13224019. DOI: https://doi.org/10.3390/polym13224019

Sadeghi, A., Razavi, S. M. A., & Shahrampour, D. (2022). Fabrication and Characterization of Biodegradable Active Films with Modified Morphology Based on Polycaprolactone-Polylactic Acid-Green Tea Extract. International Journal of Biological Macromolecules, 205, 341-356. https://doi.org/10.1016/j.ijbiomac.2022.02.070. DOI: https://doi.org/10.1016/j.ijbiomac.2022.02.070

Safitri, A., Sinaga, P. S. D., Nasution, H., Harahap, H., Masyithah, Z., & Hasibuan, R. (2022). The Role of Various Plastisizers and Fillers Additions in Improving Tensile Strength of Starch-Based Bioplastics : A Mini Review. In IOP Conference Series : Earth and Environmental Science, 1115(1), http://dx.doi.org/10.1088/1755-1315/1115/1/012076. DOI: https://doi.org/10.1088/1755-1315/1115/1/012076

Swetha, T. A., Ananthi, V., Bora, A., Sengottuvelan, N., Ponnuchamy, K., Muthusamy, G., & Arun, A. (2023). A Review on Biodegradable Polylactic Acid (Pla) Production from Fermentative Food Waste-its Applications and Degradation. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2023.123703. DOI: https://doi.org/10.1016/j.ijbiomac.2023.123703

Syafiq, R., Sapuan, S. M., & Zuhri, M. R. M. (2021). Antimicrobial Activity, Physical, Mechanical and Barrier Properties of Sugar Palm Based Nanocellulose/Starch Biocomposite Films Incorporated with Cinnamon Essential Oil. Journal of Materials Research and Technology, 11, 144-157. https://doi.org/10.1016/j.jmrt.2020.12.091. DOI: https://doi.org/10.1016/j.jmrt.2020.12.091

Tian, J., Cao, Z., Qian, S., Xia, Y., Zhang, J., Kong, Y., Sheng, K., Zhang, Y., Wan, Y. & Takahashi, J. (2022). Improving Tensile Strength and Impact Toughness of Plasticized Poly (Lactic Acid) Biocomposites by Incorporating Nanofibrillated Cellulose. Nanotechnology Reviews, 11(1), 2469-2482. https://doi.org/10.1515/ntrev-2022-0142. DOI: https://doi.org/10.1515/ntrev-2022-0142

Wu, J., Liu, S., Wu, G., Zhang, M., Jing, Y., Li, J., Patowary, M.M.H., Chakma, R., Wang, C., Li, F., Jia, L., Zhang, Y., & Lu, D. (2022). Preparation and Properties of Polylactic Acid (PLA) Antibacterial Nanofiber Membrane with Ag@ TP Composite Antibacterial Agent. The Journal of the Textile Institute, 1-11. https://doi.org/10.1080/00405000.2022.2150951. DOI: https://doi.org/10.1080/00405000.2022.2150951

Wu, Y., Ma, Y., Gao, Y., Liu, Y., & Gao, C. (2022). Poly (Lactic Acid) - Based ph Responsive Membrane Combined with Chitosan and Alizarin for Food Packaging. International Journal of Biological Macromolecules, 214, 348–359. https://doi.org/10.1016/j.ijbiomac.2022.06.039. DOI: https://doi.org/10.1016/j.ijbiomac.2022.06.039

Yu, F., Fei, X., He, Y., & Li, H. (2021). Poly (Lactic Acid) - Based Composite Film Reinforced with Acetylated Cellulose Nanocrystals and ZnO Nanoparticles for Active Food Packaging. International Journal of Biological Macromolecules, 186, 770–779. https://doi.org/10.1016/j.ijbiomac.2021.07.097. DOI: https://doi.org/10.1016/j.ijbiomac.2021.07.097

Zafar, R., Lee, W., & Kwak, S. Y. (2022). A Facile Strategy for Enhancing Tensile Toughness of Poly (Lactic Acid) (PLA) by Blending of a Cellulose Bio-Toughener Bearing a Highly Branched Polycaprolactone. European Polymer Journal, 175. https://doi.org/10.1016/j.eurpolymj.2022.111376. DOI: https://doi.org/10.1016/j.eurpolymj.2022.111376

Zhu, Z., Hu, J., & Zhong, Z. (2022). Preparation and Characterization of Long-Term Antibacterial and pH-Responsive Polylactic Acid/Octenyl Succinic Anhydride-Chitosan@ Tea Tree Oil Microcapsules. International Journal of Biological Macromolecules, 220, 1318-1328. https://doi.org/10.1016/j.ijbiomac.2022.09.038. DOI: https://doi.org/10.1016/j.ijbiomac.2022.09.038

Downloads

Published

2023-10-17

How to Cite

Salim, S., Rihayat, T., Fitria, & Safitri, A. (2023). THE EFFECT OF CATECHINS AND NANOCHITOSAN ON REDUCING BACTERIAL COLONIES AND MATERIAL PERFORMANCE IN PACKAGING FILMS BASED ON PLA/PCL BLEND. International Journal of Research -GRANTHAALAYAH, 11(9), 103–112. https://doi.org/10.29121/granthaalayah.v11.i9.2023.5334

Most read articles by the same author(s)