CHARACTERISTIC OF POLY LACTID ACID (PLA)/ COIR WITH ADDITION OF CHITOSAN VARIATIONS FOR REVIEWING PLASTIC MATERIALS

Authors

  • Ridwan Department of Chemical Engineering, Lhokseumawe State Polytechnic, Jl. Medan - Banda Aceh No. Km. 280, RW. Buketrata, Punteut Mosque, Blang Mangat, Lhokseumawe City, Aceh 24301, Indonesia
  • Teuku Rihayat Department of Chemical Engineering, Lhokseumawe State Polytechnic, Jl. Medan - Banda Aceh No. Km. 280, RW. Buketrata, Punteut Mosque, Blang Mangat, Lhokseumawe City, Aceh 24301, Indonesia
  • Adi Saputra Ismy Department of Mechanical Engineering, Lhokseumawe State Polytechnic, Jl. Medan - Banda Aceh No. Km. 280, RW. Buketrata, Punteut Mosque, Blang Mangat, Lhokseumawe City, Aceh 24301, Indonesia
  • Awanis Ilmi Department of Chemical Engineering, Lhokseumawe State Polytechnic, Jl. Medan - Banda Aceh No. Km. 280, RW. Buketrata, Punteut Mosque, Blang Mangat, Lhokseumawe City, Aceh 24301, Indonesia
  • Nurhanifa Aidy Department of Renewable Energy Engineering, Malikussaleh University, Engku Nie, Cot Rd, Reuleut Tim., Muara Batu, North Aceh Regency, 24354, Aceh, Indonesia
  • Atiqah Aida Department of Chemical Engineering, Lhokseumawe State Polytechnic, Jl. Medan - Banda Aceh No. Km. 280, RW. Buketrata, Punteut Mosque, Blang Mangat, Lhokseumawe City, Aceh 24301, Indonesia

DOI:

https://doi.org/10.29121/granthaalayah.v10.i10.2022.4832

Keywords:

Poly Lactid Acid, Coir, Chitosan, Polymers

Abstract [English]

Poly lactic acid or poly lactide (PLA) is a natural polymer that is biodegradable, thermoplastic and is an aliphatic polyester made from renewable materials such as young kepok banana starch. Poly lactic acid with the chemical formula CH3CH(OH)COOH is a biodegradable polymer obtained from the combination of lactic acid monomers. Therefore, in this study the PLA polymer as a matrix was added with fillers in the form of Coir and Chitosan. Coir is a coconut fiber that has been widely used by researchers for decades. Chitosan has been widely used as an important and promising biopolymer material in tissue engineering because of its anti-microbial activity, biodegradability, biocompatibility, and non-toxicity. The characteristics resulting from the combination of these three materials resulted in 4 samples, namely the fixed variable PLA with variations of Coir and Chitosan. Sample 1 Coir/Chitosan ( 90:10 (%)) produces a tensile strength value of 80 MPa. Sample 2 Coir/Chitosan (80:20 (%)) yielded a tensile strength of 55 MPa. Samples of 3 Coir/Chitosan (70:80 (%)) yielded a tensile strength of 48 MPa. Samples of 4 Coir/Chitosan (60:40 (%)) produced a tensile strength of 30 MPa. The FTIR test on sample 1 resulted in a new compound found in the PLA/Coir/Chitosan composite, namely the compound N=C=O which is an isocyanate group at the peak of the 2279.86 cm-1 group. While the SEM test which shows the physical structure of the sample composition of PLA with the addition of Coir/Chitosan (90:10%) is the sample with the best morphology.

Downloads

Download data is not yet available.

References

Agüero, A., Garcia-Sanoguera, D., Lascano, D., Rojas-Lema, S., Ivorra-Martinez, J., Fenollar, O., and Torres-Giner, S. (2020). Evaluation of Different Compatibilization Strategies To Improve The Performance of Injection-Molded Green Composite Pieces Made of Polylactide Reinforced With Short Flaxseed Fibers. Polymers, 12-821. https://doi.org/10.3390/polym12040821.

Devi, B. C., Febriansyah, B. A., Nurkhamidah, S. and Rahmawa, Y. (2019). Studi Pemilihan Proses Pabrik Poly-L-Lactic Acid (PLLA) Dari Tetes Tebu. 8(2). https://doi.org/10.12962/j23373539.v8i2.46456.

Bifel, R. D. N., Maliwemu, E.U.K., and Adoe, D.G.H. (2015). Pengaruh Perlakuan Alkali Serat Sabut Kelapa terhadap Kekuatan Tarik Komposit Polyester. LJTMU. 02(01), 61-68.

Christiani Evi, S. (2008). Karakterisasi Ijuk Pada Papan Komposit Ijuk Serat Pendek Sebagai Perisai Radiasi Neutron. Thesis. Universitas Sumatra Utara.

Gokila, S., Gomathi, T., Vijayalakshmi, K., Alsharani, F.A., Sukumaran, A and Sudha, P.N. (2018). Development of 3D Scaffolds Using Nanochitosan/SilkFibroin/ Hyaluronic Acid Biomaterials For Tissue Engineering Applications. International Journal of Biological Macromolecules, 120. 876-885. https://doi.org/10.1016/j.ijbiomac.2018.08.149.

Kasim, A. N., Selamat, M. Z, Daud, M. A. M., Yaakob, M. Y., Putra, A., and Sivakumar, D. (2016). Mechanical Properties of Polypropylene Composites Reinfprced with Alkaline Treated Pineapple Leaf Fibre from Josapine Cultivar. International Journal of Automative and Mechanical Engineering, 13, 3157-3167. https://doi.org/10.15282/ijame.13.1.2016.3.0263.

Rajesh, M., Pitchaimani Jeyara., and Rajini, N. (2016). Free Vibration Characteristics of Banana/Sisal Natural Fibers Reinforced Hybrid Polymer Composite Beam. Procedia Engineering. 144. 1055 - 1059. https://doi.org/10.1016/j.proeng.2016.05.056.

Manalo, A. C., Wani, E., Zukarnain, A. N., and Karunasena, W., Lau, T. K. (2015). Effects of Alkali Treatment And Elevated Temperature on The Mechanical Properties of Bamboo Fibre Polyester Composites. Composites Part. 80, 73-83. https://doi.org/10.1016/j.compositesb.2015.05.033.

Oerbandono, T., Gunawan, A. A., and Sulistyo, E. (2015). Karakteristik Kekuatan Bending Dan Impact Akibat Variasi Unidirectional Pre-Loading Pada Serat Penguat Komposit Polyester. Proceeding Seminar Nasional Tahunan Teknik Mesin XIV (SNTTM XIV). Banjarmasin.

Ramesh. M., Palanikumar. K., and Reddy, H. K., (2013). Mechanical Property Evaluation of Sisal-Jute-Glass Fiber Reinforced Polyester Composites. Composites : Part B. 48. 1-9. https://doi.org/10.1016/j.compositesb.2012.12.004.

Ridwan, Wirjosentono, B., Tamrin, Siburian, R., Rihayat, T., and Nurhanifa. (2018). Modification of PLA/PCL/Aceh's bentonite nanocomposites as biomedical materials. AIP Conference Proceedings, 2049(1), 02008. https://doi.org/10.1063/1.5082413.

Romels, C. A. L., Soenoko, R., and Wahyudi, S. (2011). Komposit Hibrid Polyester Berpenguat Serbuk Batang dan Serat Sabut Kelapa. Jurnal Rekayasa Mesin. 2(2), 145-153.

Sanjay, M. R., and Yogesha, B. (2017). Studies on Natural/Glass Fiber Reinforced Polymer Hybrid Composites : An Evolution. Materials Today : Proceedings. 4, 2739-2747. https://doi.org/10.1016/j.matpr.2017.02.151.

Shrivastava, R., Telang A., Rana. R. S. and Purohit, R. (2017). Mechanical Properties of Coir/ G Lass Fiber Epoxy Resin Hybrid Composite. Materials Today: Proceedings. 4, 3477-3483. https://doi.org/10.1016/j.matpr.2017.02.237.

Siakeng, R., Jawaid, M., Ariffin, H., and Sapuan, S.M., (2019). Mechanical, Dynamic, and Thermomechanical Properties of Coir/Pineapple Leaf Fiber Reinforced Polylactic Acid Hybrid Biocomposites. Polym. Compos. 40, 2000-2011. https://doi.org/10.1002/pc.24978.

Sim, K.J., Han, S.O., and Seo, Y.B. (2010). Dynamic Mechanical And Thermal Properties of Red Algae Fiber Reinforced Poly (Lactic Acid) Biocomposites. Macromol. 18, 489-495. https://doi.org/10.1007/s13233-010-0503-3.

Sinaga, R.F., Ginting, G.M., Ginting, M.H., and Hasibuan, R. (2014). Pengaruh Penambahan Gliserol Terhadap Sifat Kekuatan Tarik dan Pemanjangan Saat Putus Bioplastik dari Pati Ubi Talas. Jurnal Teknik Kimia USU 3(2), 19-24. https://doi.org/10.32734/jtk.v3i2.1608.

Singh, J. I. P., Singh, S., and Dhawan, V. (2020). Influence of Fiber Volume Fraction and Curing Temperature on Mechanical Properties of Jute/PLA Green Composites. Polymers and Polym. Compos. 28, 273-284. https://doi.org/10.1177/0967391119872875.

Spiridon, I., Darie, R.N., and Kangas, H. (2016). Influence of Fiber Modifications on PLA/Fiber Composites. Behavior To Accelerated Weathering. Composites, 92, 19-27. https://doi.org/10.1016/j.compositesb.2016.02.032.

Sujaritjun, W., Uawongsuwan, P., Pivsa-Art, W., and Hamada, H. (2013). Mechanical Property of Surface Modified Natural Fiber Reinforced PLA Biocomposites. Energy Procedia. 34, 664-672. https://doi.org/10.1016/j.egypro.2013.06.798.

Suryani, Agusnar, H., Wirjosentono, B., Rihayat, T. and Nurhanifa (2018). Thermal Degradation of Aceh's Bentonite Reinforced Poly Lactic Acid (PLA) Based on Renewable Resources For Packaging Application. AIP Conference Proceedings, 2049, 020040. https://doi.org/10.1063/1.5082445.

Syamani, F.A., Kurniawan, Y.D., and Suryanegara, L. (2014). Cellulose Fibers from Oil Palm Fronds Reinforced Polylactic Acid Composite. Proceeding of the ASEAN Conference on Science and Technology, 1-5.

Rihayat, T., Suryani, Satriananda, Ridwan, Nurhanifa, Putra, A., Audina, N., Yunus, M., Sariadi, Safari, Jalal, R., Khan, N. S. P., Saifuddin. (2018). Influence of coating polyurethane with mixture of bentonite and chitosan nanocomposites. AIP Conference Proceedings, 2049(1), 020020. https://doi.org/10.1063/1.5082425.

Yashwanth, M. K., Easwara Prasad, G. L., and Akshay, N. K. (2016). Comparative Study on Properties of Coir and Sisal Fibre Reinforced Composites. International Journal of Inovative Research in Science, Engineering and Technology. 5(9), 992-926.

Yusof, Y., Mat Nawi, B. N., and Alias, B. M. S. H. (2016). Pineapple Leaf Fiber and Pineapple Peduncle Fiber Analyzing and Characterization for Yarn Production. ARPN Journal of Engineering and Applied Sciences. 11(6), 4197-4202.

Yusoff, B. R., Takagi, H., and Nakagaito, A. N. (2016). Tensile and Flexural Properties of Polylactic Acid-Base Hybrid Green Composites Renforced by Kenaf, Bamboo and Coir Fibers. Industrial Crops and Product. 94, 562-573. https://doi.org/10.1016/j.indcrop.2016.09.017.

Zakikhani, P., Zahari, R., Sultan, M. T. H., and Majid. D. I (2014). Extraction and Preparation of Bamboo Fibre Reinforced Composites. Materials and Design. 63, 820-828. https://doi.org/10.1016/j.matdes.2014.06.058.

Zhang, J., Khatibi, A. A., Castanet, E., Baum, T., Komeily-Nia, Z., Vroman, P., and Wang, X., (2019). Effect of Natural Fibre Reinforcement on The Sound and Vibration Damping Properties of Bio-Composites Compression Moulded By Nonwoven Mats. Compos. Commun. 13, 12-17. https://doi.org/10.1016/j.coco.2019.02.002.

Zhang, L., Li, Z., Pan, Y.T., Y'anez, ˜ A.P., Hu, S., Zhang, X.Q., Wang, R., and Wang, D.Y. (2018). Polydopamine Induced Natural Fiber Surface Functionalization : A Way Towards Flame Retardancy of Flax/Poly (Lactic Acid) Biocomposites. Composites, Part 154, 56-63. https://doi.org/10.1016/j.compositesb.2018.07.037.

Downloads

Published

2022-11-14

How to Cite

Ridwan, Rihayat, T., Saputra Ismy, A., Ilmi, A., Aidy, N., & Aida, A. (2022). CHARACTERISTIC OF POLY LACTID ACID (PLA)/ COIR WITH ADDITION OF CHITOSAN VARIATIONS FOR REVIEWING PLASTIC MATERIALS. International Journal of Research -GRANTHAALAYAH, 10(10), 205–215. https://doi.org/10.29121/granthaalayah.v10.i10.2022.4832

Most read articles by the same author(s)