THERMAL BEHAVIOR IMPROVEMENT OF BIODEGRADABLE FIBER POLYMER COMPOSITES POLYLACTIC ACID (PLA)/COIR USING ACEH’S BENTONITE

Authors

  • Ridwan Department of Chemical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, Aceh 24301, Indonesia
  • Teuku Rihayat Department of Chemical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, Aceh 24301, Indonesia https://orcid.org/0000-0001-5943-8574
  • Adi Saputra Ismy Department of mechanical Engineering, Politeknik Negeri, Lhokseumawe, Jl. Banda Aceh-Medan Km. 280,3, Buketrata, Mesjid Puntet, Blang Mangat, Kota Lhokseumawe, Aceh 24301, Indonesia
  • Nurhanifa Aidy Departement of Renewable Energy, Universitas Malikussaleh, Tengku Nie, Cot Rd, Reuleut Tim., Muara Batu, Kabupaten Aceh Utara, 24355, Aceh, Indonesia https://orcid.org/0000-0002-2958-4893
  • Awanis Ilmi Department of Chemical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, Aceh 24301, Indonesia

DOI:

https://doi.org/10.29121/granthaalayah.v9.i11.2021.4381

Keywords:

Polylactic Acid, Coir, Bentonite, Composites, Thermogravimetric Analysis (TGA)

Abstract [English]

Research has been conducted on the manufacture of PLA Coir Bentonite composites. This study aims to examine the effect of PLA on mechanical strength with the addition of coir and bentonite fillers from North Aceh and Central Aceh. The sample formulations used were single polymer PLA/Coir and PLA/Coir with variations of filler Bentonite Aceh Utara and Aceh Tengah with 2, 4, 6 and 8% respectively. The combination of PCa samples showed the highest bacterial colony growth rate, which was more than 100 colonies/gram during the 1 week testing period. In the PBATd filler mixture sample, the maximum bacterial test value was 65 colonies/gram and the minimum value contained in the PBAUa sample was 105 colonies/gram. The best tensile strength was obtained in the PBATc sample, namely 65 MPa. PBATd samples began to degrade at 370.15oC compared to PCa samples degraded at 280.21oC. While the PBAUa sample began to degrade at a temperature of 282.11oC. The surface structure of the PCa sample is more homogeneous because there is no bentonite filler mixture, but it is brittle and crumbles easily. For the PBATd sample, the surface structure is smoother and more homogeneous compared to the PBAUa sample.

Downloads

Download data is not yet available.

References

Ajeng.; Dianita ; (2017) Effect of Fiber Mass Fraction on Mechanical Properties of Coconut Coir Fiber Reinforced Composite Materials and Polypropylene Matrix. Essay. Jember: University of Jember.

Aniber, B.; Stanly,R.; Muhammad, R. (2015) Comparative study of tensile properties in thermoplastic& thermoset polymer composites.International Journal of Applied Engineering Research. 10, 10109-10113.

Astika, I.M.;Dwijana, I.G.K. (2018) Characteristics of tensile properties and fracture modes of polymer composites with coconut fiber reinforcement. Mechanical Engineering Dynamics..4(2). 2088-088.

Azhar, E.; Equbal, I.; AnjumBadruddin, I.; Algahtanic, A. (2021) A critical insight into the use of FDM for production of EDM electrode.Journal of Alexandria Engineering Jour. 1-10. Retrieved from https://doi.org/10.1016/j.aej.2021.09.033 DOI: https://doi.org/10.1016/j.aej.2021.09.033

Bhasney, S.M.;Mondal, K.;Kumar, A.;Katiyar, V.; (2020) Effect of microcrystalline cellulose fibers [MCC] on morphological and crystalline behavior of high density polyethylene [HDPE]/polylactic acid [PLA] mixtures. Compost. science. Technol. 19 , 1-23.

Bino, P.;Stanly, J.R.; Ramachandran, M. (2015) Analysis of the mechanical properties of glass and carbon fiber reinforced polymer materials. International Journal of Applied Engineering Research. 10, 10387-10391.

Chern, C.; Ibrahim, N.; Wan, M.; Lalu, Y.; Zainuddin, N. (2013) Improved Mechanical and Thermal Properties of Polylactic Acid/Polycaprolactone Blends by Hydrophilic Nanoclay.Indian Journal of Material Science. 11, 816503. Retrieved from https://doi.org/10.1155/2013/816503 DOI: https://doi.org/10.1155/2013/816503

Dong, Y.;Ghataura, A.;Takagi, H.; Hazim.;Haroosh, J.; Antonio N.; Nakagaito.; Kin-Tak Lau.; (2014) Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties. Composites Part A: Applied Science and Manufacturing. 63. 76-84. Retrieved from https://doi.org/10.1016/j.compositesa.2014.04.003 DOI: https://doi.org/10.1016/j.compositesa.2014.04.003

Douglas,P.; Albadarin, A.; Al-Muhtaseb,A.H.; Mangwandi, C.; Walker, G. (2015) Thermo-Mechanical Properties of Poly e-Caprolactone/Poly L-Lactic Mixtures: Addition of Nalidixic Acid and Polyethylene Glycol Additives.Journal of Mechanical Behavior of Biomedical Materials. 45, 154-16. Retrieved from https://doi.org/10.1016/j.jmbbm.2015.01.022 DOI: https://doi.org/10.1016/j.jmbbm.2015.01.022

Fahmi, H.; Hermansyah, H. (2011) Effect of Fiber Orientation on Polyester Resin Composites/Pineapple Leaf Fibers on Tensile Strength. Journal of Mechanical Engineering. 1. 46-52.

Ginting, E.M.; (2016) Mechanical Properties Of HDPE Thermoplastic Nano Composites With Multiple Fillers. Unimed Press. 1-4.

Hasnan, M.A.; Husseinsyah, S.; Ying, L.B.; Rahman, M. (2015) Chemical modification of palm kernel shield filled polylactic acis biocomposite films. Journal of Palm Kernel/PLA Films Bioresources.11 (3), 6639-6648. Retrieved from https://doi.org/10.15376/biores.11.3.6639-6648 DOI: https://doi.org/10.15376/biores.11.3.6639-6648

Hin,L.; Aussler, H.; Vogel, R.; Brunig, H.; Heinrich, G.; Werner, C, (2012) Hollowfiber is made of a poly (3-hydroxybutyrate)/poly-e-caprolactone mixture. Express Polymer Letters. 7, 643-652. Retrieved from https://doi.org/10.3144/expresspolymlett.2011.62 DOI: https://doi.org/10.3144/expresspolymlett.2011.62

Jaafar, J.;Siregar,J.p.;Tezara, C.;Hamdan.; Rihayat, T. (2019) A review of important considerations in the compression molding process of short natural fiber composites. The International Journal of Advanced Manufacturing Technology. 105, 1-13. Retrieved from https://doi.org/10.1007/s00170-019-04466-8 DOI: https://doi.org/10.1007/s00170-019-04466-8

Joowon, Park.; Hyoryong, L.; Hyeonwoo, K.; Sukho, P.; (2020) Magnetically steerable manipulator with variable stiffness using graphene polylactic acid for minimally invasive surgery. Sensors and Actuators A: Physical. 309. 0924-4247. Retrieved from https://doi.org/10.1016/j.sna.2020.112032 DOI: https://doi.org/10.1016/j.sna.2020.112032

Kurzina, I.A.; Laput,O.A.; Zuza,D.A.; Vasenina, M.C.; Salvadori, K.P.; Savkin, D.N.; Lytkina, V.V.; Botvin, M.P.; Kalashnikov.; (2020) Surface property modification of biocompatible material based on polylactic acid by ion implantation, Surface and Coatings Technology .388, 0257-8972. Retrieved from https://doi.org/10.1016/j.surfcoat.2020.125529 DOI: https://doi.org/10.1016/j.surfcoat.2020.125529

Linyun, Z.; Chongxing, H.; Yangfan X.; Haohe H.; Hui, Z.; Jian, W.; Shuangfei, W.; (2020) Synthesis and characterization of antibacterial polylactic acid film incorporated with cinnamaldehyde inclusions for fruit packaging. International Journal of Biological Macromolecules. 164.4547-4555. Retrieved from https://doi.org/10.1016/j.ijbiomac.2020.09.065 DOI: https://doi.org/10.1016/j.ijbiomac.2020.09.065

Makhrus, A. (2015) Modification of the Hydraulic Mechanical System Bending Test Equipment and Test Results for COR Iron Materials. Semarang. Diploma III Study Program in Mechanical Engineering, Diponegoro University. 1, 11-13.

Maryanti, B.; Sonief, A.A.; Wahyudi, S.; (2011) Effect of Alkalization of Coconut Fiber-Polyester Composite on Tensile Strength. Journal of Mechanical Engineering. 2, 123-129. Retrieved from https://rekayasamesin.ub.ac.id/index.php/rm/article/view/129/124

Najafi, N.; Heuzey, M.C.; Carreau, P.J. (2012) Polylactide (PLA)-Clay Nanocomposites Prepared By Melt Compounding In The Presence Of A Chain Extende. Composites Science and Technology. 72, 608-615. Retrieved from https://doi.org/10.1016/j.compscitech.2012.01.005 DOI: https://doi.org/10.1016/j.compscitech.2012.01.005

Nurdiana, Z.; Lubis.;Vonnisa M.; (2013) Determination of Tensile Strength of Epoxy Composite Material with Rockwool Fiber Filler Experimentally. Dynamic Journal. 1, 13, 0216-7492.

Piekarska, K.;Piorkowska, E.; Bojda J.; (2017) Effect of matrix crystallinity, filler grain size and modification on properties of PLA/calcium carbonate composites. PolymTest..62, 203-209., Retrieved from https://doi.org/10.1016/j.polymertesting.2017.06.025 DOI: https://doi.org/10.1016/j.polymertesting.2017.06.025

Pradeep, P.; Edwin, R.D.; (2015) Muhammad,R. Mechanical Characterization of hemp fiber on glass and carbon fiber reinforced polymer composites. International Journal of Applied Engineering Research. 10, 11, 10392-10396.

Purwaningsih,E.; Supartono,S.; Harjono, H. (2012) Transesterification reaction of coconut oil with methanol using bentonite as catalyst. Indonesian Journal of Chemical Science. 1(2),133-139

Qamara, A.; Anwara, Z.; Alib, H.; Imran, S.; Shaukat, R.; Mujtaba, M. (2021) Experimental investigation of dispersion stability and thermophysical properties of ZnO/DIW nanofluids for heat transfer applications. Journal of Alexandria Engineering Journal.1-16. Retrieved from https://doi.org/10.1016/j.aej.2021.09.028 DOI: https://doi.org/10.1016/j.aej.2021.09.028

Rihayat, T.; Suryani, S.; Zaini, H.; Rahmawati, C.A.; Irawan, Y. (2017) Synthesis, characterization and microbial protection of palm oil based polyurethane/bentonite/chitosan as paint and coating material. Proceeding 2nd International Conference Sustainable and Renewable Energy Engineering. 1, 10-13. Retrieved from https://doi.org/10.1109/ICSREE.2017.7951501 DOI: https://doi.org/10.1109/ICSREE.2017.7951501

Rihayat, T.;Salim, S.;Arlina, A. ; Z Fona.; R Jalal.; PN Alam.; M Sami.; J Syarif.; N Juhan. (2018) Determination of CEC value (cation exchange capacity) of bentonites from North Aceh and Bener Meriah, Aceh Province Indonesia using three methods. IOP Conference Series: Materials Science and Engineering. 334, 1-7. Retrieved from https://doi.org/10.1088/1757-899X/334/1/012054 DOI: https://doi.org/10.1088/1757-899X/334/1/012054

Rodchanasuripron, W.;Seadan, M.;Suttiruengwong, S.; (2020) Properties of non-woven polylactic acid fibers prepared by the rotational jet spinning method. Materials Today Sustainability.10. Retrieved from https://doi.org/10.1016/j.mtsust.2020.100046 DOI: https://doi.org/10.1016/j.mtsust.2020.100046

Shumigin, D.; Tarasova, E.; Krumme, A.; (2011) Meier Rheological and mechanical properties of poly (lactic) acid/cellulose and LDPE/cellulose composite. Journal of material science (medziagotyra). 17 (1), 32-37. Retrieved from https://doi.org/10.5755/j01.ms.17.1.245 DOI: https://doi.org/10.5755/j01.ms.17.1.245

Sung, S.H.; Chang, Y.;Han, J.; (2017) Development of polylactic acid nanocomposite films reinforced withcellulose nanocrystals derived from coffee silverskin. Carbohydrate Polymers.169. 495-503. Retrieved from https://doi.org/10.1016/j.carbpol.2017.04.037 DOI: https://doi.org/10.1016/j.carbpol.2017.04.037

Suryani, Harry Agusnar, Basuki Wirjosentono, Teuku Rihayat, Nurhanifa. (2018). Thermal degradation of Aceh's bentonite reinforced poly lactic acid (PLA) based on renewable resources for packaging application. AIP Conference Proceedings, Vol. 2049, 1-5. Retrieved from https://doi.org/10.1063/1.5082445 DOI: https://doi.org/10.1063/1.5082445

Suryani, S.; Agusnar, H.; Wirjosentono,B.; Rihayat, T.; Nugroho, A.R. (2016) Synthesis and Characterization of Nature-Based Poly Lactic Acid Using Tmah (II) Catalyst Octoate. Proceedings of the 2016 National Seminar on Chemistry and Chemistry Education. 16-20.

Syamani, F.A.; Kurniawan, Y.D.; Suryanegara, L. (2014) Cellulose fibers from oil palm fronds reinforced polylactic acid composite.Proceeding of the ASEAN conference on science and technology. 1-5. Retrieved from https://d1wqtxts1xzle7.cloudfront.net/56979305/CELLULOSE_FIBERS_FROM_OIL_PALM_FRONDS_RE20180711-9775-1do8lwa-with-cover-page-v2.pdf?Expires=1637919721&Signature=dCJ8nM--CRlzSbHvOGs1uqp8kD9Rwy6wZvNNx2mLz2BQum4G5tolS-pBMCCS~7hSXT~V6juNaER0U8UxbFTZY7u~2GrqDKViI6AyHMgNqX0vteNveqY~Twet2yvhVRpvQWH-I2fv7pW12XiH3U0VK6LSVbgXo5PSS3A1xIToSs4MXTYseDOaI3vwde60iSH0701f~45kTb~YjN4E3kSg8ZGm9gua1MVvXn91Ms8BVfRmPamvQoIWnF24UJI0QQfApL-N12ODuSPTgI8QhKcElH2CBeteafhd65iaC6mwk~69U2c1P0UdVJZqtb0BKMW5lRA2frnKyFl0mJ5gx7bkVw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

Tawakkal, I.; Talib, R.; Abdan, K.; Ling, C.N. (2012) Mechanical and physical properties of kenaf derived cellulose (KDC) - filled polylactic acid (PLA) composites. Journal of PLA-Kenaf Properties Bioresources. 7 (2), 1643-1655. Retrieved from https://doi.org/10.15376/biores.7.2.1643-1655 DOI: https://doi.org/10.15376/biores.7.2.1643-1655

Teuku Rihayat, Suryani, Satriananda, Ridwan, Nurhanifa, Alfian Putra, Nia Audina, Muhammad Yunus, Sariadi, Safari, Ramzi Jalal, Nani Siska Putri Khan, Saifuddin. (2018). Influence of coating polyurethane with mixture of bentonite and chitosan nanocomposites. AIP Conference Proceedings, Vol. 2049, 1-6. Retrieved from https://doi.org/10.1063/1.5082425 DOI: https://doi.org/10.1063/1.5082425

Teuku Rihayat, Suryani, Zaimahwati, Salmyah, Sariadi, Fitria, Satriananda, Alfian Putra, Zahra Fona, Juanda, Raudah, Aida Safitri, Mawaddah, Nurhanifa, Shafira Riskina and Wildan Syahputra. (2019). Composition on Essential Oil Extraction from Lemongrass Fragrant by Microwave Air Hydro Distillation Method to Perfume Dermatitis Production. IOP Conference Series: Materials Science and Engineering, Vol.506, 1-6. Retrieved from https://doi.org/10.1088/1757-899X/506/1/012053 DOI: https://doi.org/10.1088/1757-899X/506/1/012053

Tsung-Han, Y.; Yu-Hsun, S.; Hsuan-Hao, H.; Hsin-Jung, T.; Wen-Kuang, H.; (2020) Amorphous fraction controlled mechanical and optical properties of polylactic acid below glass transition temperature. Polymer Testing. 2020.91. 0142-9418. Retrieved from https://doi.org/10.1016/j.polymertesting.2020.106731 DOI: https://doi.org/10.1016/j.polymertesting.2020.106731

Valerio, O.; Misra, M.; Mohanty, A.K. (2018) Statistical design of sustainable thermoplastic mixtures of poly(glycerol succinate-co-maleate) (PGSMA), poly(lactic acid) (PLA) and poly(butylene succinate) (PBS). Polym. Test. 65, 420-428. Retrieved from https://doi.org/10.1016/j.polymertesting.2017.12.018 DOI: https://doi.org/10.1016/j.polymertesting.2017.12.018

Yingfeng, Z.; Kang, C.; Ping, L.; Xiaoyu, H.; Wenhao, L.; Yiqiang, W.; (2020) Effect of nano-SiO2 on the compatibility interface and properties of polylactic acid-grafted-bamboo fiber/polylactic acid composite. International Journal of Biological Macromolecules. 157. 177-186. Retrieved from https://doi.org/10.1016/j.ijbiomac.2020.04.205 DOI: https://doi.org/10.1016/j.ijbiomac.2020.04.205

Yusoff, R.B.;Takagi, H.;Nakagaito, A.N.; (2016) Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Industrial Crops and Products.94. Retrieved from https://doi.org/10.1016/j.indcrop.2016.09.017 DOI: https://doi.org/10.1016/j.indcrop.2016.09.017

Zulkifli.; Rihayat, T.; Suryani,S.; Facraniah.; Ummi, Habibah.; Nia, A.;Fauzi, T.; Nurhanifa.; Zaimahwati.; Rosalina. (2018) Purification process of jelantah oil using active charcoal kepok's banana.AIP Conference Proceedings. 1, 1-6. Retrieved from https://doi.org/10.1063/1.5082427 DOI: https://doi.org/10.1063/1.5082427

Downloads

Published

2021-11-30

How to Cite

Ridwan, Rihayat, T. ., Ismy, A. S., Aidy, N., & Ilmi, A. (2021). THERMAL BEHAVIOR IMPROVEMENT OF BIODEGRADABLE FIBER POLYMER COMPOSITES POLYLACTIC ACID (PLA)/COIR USING ACEH’S BENTONITE. International Journal of Research -GRANTHAALAYAH, 9(11), 97–108. https://doi.org/10.29121/granthaalayah.v9.i11.2021.4381