PROMOTION OF POLYLACTID ACID ECO-FRIENDLY BY COMBINED ADDITION OF PCL CATECHIN-CHITOSAN UNDER EXTRUDING CONDITION

Authors

  • Suryani Department of Chemical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, Aceh 24301, Indonesia
  • Teuku Rihayat Department of Chemical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, Aceh 24301, Indonesia https://orcid.org/0000-0001-5943-8574
  • Een Setiawati Department of Chemical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, Aceh 24301, Indonesia
  • Nurhanif Aidy Department of Renewable Energy Engineering, Universitas Malikussaleh, Blang Pulo, Muara Satu, North Aceh, Aceh 24355 https://orcid.org/0000-0002-2958-4893

DOI:

https://doi.org/10.29121/granthaalayah.v9.i11.2021.4380

Keywords:

Polylactic Acid, Poly Caprolactone, Catechin, Chitosan, Zno Catalyst

Abstract [English]

Biodegradable polymers are seen as a potential solution for the environment generated by plastic waste. The purpose of this study was to see the effect of adding a catalyst to the manufacture of PLA/PCL-Catechin-Chitosan as a raw material for making plastics . This research was carried out with variations in the addition of ZnO catalyst 0.1 % (PPXya), 0.2% (PPXyb) and 0.3% (PPXyc ). From the results of the analysis using Fourier Transform Infrared (FTIR) obtained stretching groups of  OH, CO and C= O at wavelengths (3860, 1060 and 1753) cm-1 at the addition of 0.3% ZnO catalyst (PPXyc ). Based on the analysis of the thermal stability using Thermogravimetry (TGA) the decomposition temperature was obtained at 387℃ with the addition of catalyst 0.3% (PPXyc ). Morphological analysis using Scanning Electron Microscopy (SEM) showed that the surface structure of PLA was in the form of widespread lumps. The more concentration of additional catalyst used can affect the formation of PLA/PCL-Catechin-Chitosan. The result of the tensile test tensile analysus are greater the addition of ZnO catalyst in the sample PLA-PCL-Catechin-hitosan can to be able to increase the tensile value of the of the sample.

Downloads

Download data is not yet available.

References

Aneta K. Urbanek, Aleksandra M. Mirończuk, Alberto García-Martín, Ana Saborido, Isabel de la Mata, Miguel Arroyo. (2020) Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1868, 140315. Retrieved from https://doi.org/10.1016/j.bbapap.2019.140315 DOI: https://doi.org/10.1016/j.bbapap.2019.140315

Arfat, Y.A.; Ahmed, J.; Ejaz, M.; Mullah, M. (2018) Polylactide/graphene oxide nanosheets/clove essential oil composite films for potential food packaging applications. Int. J. Biol. Macromol. 107, 194-203. Retrieved from https://doi.org/10.1016/j.ijbiomac.2017.08.156 DOI: https://doi.org/10.1016/j.ijbiomac.2017.08.156

Betty Tyler, David Gullotti, Antonella Mangraviti, Tadanobu Utsuki, Henry Brem. (2016) Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Advanced Drug Delivery Reviews.107, 163-175. Retrieved from https://doi.org/10.1016/j.addr.2016.06.018 DOI: https://doi.org/10.1016/j.addr.2016.06.018

Byung Kook Lee, Yeonhee Yun, Kinam Park. (2016) PLA micro- and nano-particles. Advanced Drug Delivery Reviews. 107, 176-191. Retrieved from https://doi.org/10.1016/j.addr.2016.05.020 DOI: https://doi.org/10.1016/j.addr.2016.05.020

Chen, P.; Liang, X.; Xu, Y.; Zhou, Y.; Nie, W. (2018) Enhanced thermal and mechanical properties of PLA/MoS2 nanocomposites synthesized via the in-situ ring-opening polymerization. Appl. Surf. Sci. 440, 1143-1149. Retrieved from https://doi.org/10.1016/j.apsusc.2018.01.260 DOI: https://doi.org/10.1016/j.apsusc.2018.01.260

Haghighi, H.; Licciardello, F.; Fava, P.; Siesler, H.W.; Pulvirenti, A. (2020) Recent advances on chitosan-based films for sustainable food packaging applications. Food Packag. Shelf Life. 26, 100551. Retrieved from https://doi.org/10.1016/j.fpsl.2020.100551 DOI: https://doi.org/10.1016/j.fpsl.2020.100551

Ilknur Yildirim, Christine Weber, Ulrich S. Schubert. (2018) Old meets new: Combination of PLA and RDRP to obtain sophisticated macro molecular architectures. Progress in Polymer Science. 76, 111-150. Retrieved from https://doi.org/10.1016/j.progpolymsci.2017.07.010 DOI: https://doi.org/10.1016/j.progpolymsci.2017.07.010

Indumathi, M.P.; Rajarajeswari, G.R. (2019) Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications. Int. J. Biol. Macromol. 124, 163-174. Retrieved from https://doi.org/10.1016/j.ijbiomac.2018.11.195 DOI: https://doi.org/10.1016/j.ijbiomac.2018.11.195

J Jaafar, JP Siregar, C Tezara, MHM Hamdan, T Rihayat. (2019) review of important considerations in the compression molding process of short natural fiber composites. The International Journal of Advanced Manufacturing Technology. 105, 1-13. Retrieved from https://doi.org/10.1007/s00170-019-04466-8 DOI: https://doi.org/10.1007/s00170-019-04466-8

Jamshidian, M., Tehrany, EA., Imran, M., Jaquot, M., Desobry, S. (2010) Poly-Lactid Acid Production Application, Nanocomposites And Release Studies. Comprehensive Reviews In Food Science and Food Safety. 9, 560. Retrieved from https://doi.org/10.1111/j.1541-4337.2010.00126.x DOI: https://doi.org/10.1111/j.1541-4337.2010.00126.x

Jiang-Ze Wang, Ming-Liang You, Zhen-Qi Ding, Wen-Bin Ye. (2019) A review of emerging bone tissue engineering via PEG conjugated biodegradable amphiphilic copolymers. Materials Science and Engineering: C, 97, 1021-1035. Retrieved from https://doi.org/10.1016/j.msec.2019.01.057 DOI: https://doi.org/10.1016/j.msec.2019.01.057

Juliana Palacio, Natalia A Agudelo, Betty Lucy Lopez. (2018) PEGylation of PLA nanoparticles to improve mucus-penetration and colloidal stability for oral delivery systems. Current Opinion in Chemical Engineering. 11, 14-19. Retrieved from https://doi.org/10.1016/j.coche.2015.11.006 DOI: https://doi.org/10.1016/j.coche.2015.11.006

L.K. Kian, N. Saba, M. Jawaid, M.T.H. Sultan. (2019) A review on processing techniques of bast fibers nanocellulose and its polylactic acid (PLA) nanocomposites. International Journal of Biological Macromolecules. 121, 1314-1328. Retrieved from https://doi.org/10.1016/j.ijbiomac.2018.09.040 DOI: https://doi.org/10.1016/j.ijbiomac.2018.09.040

Ling-Yu Li, Lan-Yue Cui, Rong-Chang Zeng, Shuo-Qi Li, Xiao-Bo Chen, Yufeng Zheng, M. Bobby Kannan. (2018) Advances in functionalized polymer coatings on biodegradable magnesium alloys - A review, Acta Biomaterialia, 79, 23-36. Retrieved from https://doi.org/10.1016/j.actbio.2018.08.030 DOI: https://doi.org/10.1016/j.actbio.2018.08.030

Lopes, M S. (2014) Synthesis And Charactrization of Poly (Lactid Acid) by Ring Opening Polimerization for Biomedical Application. Chemical Engineering Transsaction. 38, 333.

Mansa, R., Huang, C-Te., Quintel, A., Rocha, F., Detellie, C. (2015) Preparation And Characterization Of Novel Clay/Pla Nanocomposites. Applied Clay Science. 115 , 87-96. Retrieved from https://doi.org/10.1016/j.clay.2015.07.024 DOI: https://doi.org/10.1016/j.clay.2015.07.024

Marczak Daria, Lejcuś Krzysztof, Misiewicz Jakub. (2020) Characteristics of biodegradable textiles used in environmental engineering: A comprehensive review. Journal of Cleaner Production. 268, 122129. Retrieved from https://doi.org/10.1016/j.jclepro.2020.122129 DOI: https://doi.org/10.1016/j.jclepro.2020.122129

Moataz A. Elsawy, Ki-Hyun Kim, Jae-Woo Park, Akash Deep. (2017) Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews. 79, 1346-1352. Retrieved from https://doi.org/10.1016/j.rser.2017.05.143 DOI: https://doi.org/10.1016/j.rser.2017.05.143

Najafi, N., Heuzey, M.C., Carreau, P.J. (2012) Polylactide (Pla)-Clay Nanocomposites Prepared By Melt Compounding In The Presence Of A Chain Extender. Composites Science and Technology. 72, 608-615. Retrieved from https://doi.org/10.1016/j.compscitech.2012.01.005 DOI: https://doi.org/10.1016/j.compscitech.2012.01.005

Prapruddivongs. C., Sombatsompop, N., Jayaraman, K., Jayaraman, K. (2014) Effect of Organoclay Incorporation on Mechanical, Barrier and Thermal Properties and Anti-Bacterial Performance of Pla and Pla Composites with Triclosan and Wood Flour. Polymers and Polymer Composites. 22, 643-652. Retrieved from https://doi.org/10.1177/096739111402200708 DOI: https://doi.org/10.1177/096739111402200708

Raquez, J.M., Habibi, Y., Murariu, M., Dubois, P. (2013) (PLA)-based Nanocomposites, Progress in Polymer Science. 381, 1504-1542. Retrieved from https://doi.org/10.1016/j.progpolymsci.2013.05.014 DOI: https://doi.org/10.1016/j.progpolymsci.2013.05.014

Rihayat, T. Suryani. (2010) Synthesis and Properties of Biobased Polyurethane / Montmorillonite Nanocomposites. International Scholarly and Scientific Research & Innovation. 4 (5), 714-718.

Rihayat, T., Suryani., Teuku, Fauzi., Agusnar, H., Wirjosentono, B., Syafruddin., Helmi., Zulkifli., Alam.P.N., Sami, M.. (2018) Mechanical properties evaluation of single and hybrid composites polyester reinforced bamboo, PALF and coir fiber. Materials Science and Engineering. 334, 1-8. Retrieved from https://doi.org/10.1088/1757-899X/334/1/012081 DOI: https://doi.org/10.1088/1757-899X/334/1/012081

Safitri, Nelly, Syahputra, R, Putri, K, Rihayat, Teuku, Aidy, Nurhanifa. (2020) Refining Citronella Oil (Cymbopogon Nardus L) by Utilizing Sunlight Using Solar Cells (Photovoltaics). IOP Conference Series: Materials Science and Engineering. 854, 01205. Retrieved from https://doi.org/10.1088/1757-899X/854/1/012051 DOI: https://doi.org/10.1088/1757-899X/854/1/012051

Shady Farah, Daniel G. Anderson, Robert Langer. (2016) Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Advanced Drug Delivery Reviews. 107, 367-392. Retrieved from https://doi.org/10.1016/j.addr.2016.06.012 DOI: https://doi.org/10.1016/j.addr.2016.06.012

Sun, M.L., Pei, W.L. (2017) Effect of Thermoplastic Polyurethane-Modified Silica on Melt-Blended Poly (Lactic Acid) (PLA) Nanocomposites. Polymers and Polymer Composites. 25, 583-592. Retrieved from https://doi.org/10.1177/096739111702500803 DOI: https://doi.org/10.1177/096739111702500803

Suryani, Fitria, Rihayat, Teuku, Aidy, Nurhanifa, Hasnah, T. (2020) Chitosan Modified Bio-Fibre Based Board as Antimicrobial and Anti-Crack Board. IOP Conference Series: Materials Science and Engineering. 854, 012050. Retrieved from https://doi.org/10.1088/1757-899X/854/1/012050 DOI: https://doi.org/10.1088/1757-899X/854/1/012050

Suryani., Harry, A., Basuki, W., Teuku, R., Nurhanifa. (2017) Improving the quality of biopolymer (poly lactic acid) with the addition of bentonite as filler. Materials Science and Engineering. 222, 1-7. Retrieved from https://doi.org/10.1088/1757-899X/222/1/012008 DOI: https://doi.org/10.1088/1757-899X/222/1/012008

Suyono, Yoyon. (2012) Studi Awal Pembuatan Nanokomposit dengan Filler Organoclay Untuk Kemasan. Biopropal Industri. 3, 63-69. Retrieved from http://ejournal.kemenperin.go.id/files010483/journals/12/articles/740/public/740-1934-2-PB.pdf

T Rihayat, S Salim, A Arlina, Z Fona, R Jalal, PN Alam, M Sami, J Syarif, N Juhan. (2018) Determination of CEC value (cation exchange capacity) of bentonites from North Aceh and Bener Meriah, Aceh Province, Indonesia using three methods. IOP Conference Series: Materials Science and Engineering. 334, 1-7. Retrieved from https://doi.org/10.1088/1757-899X/334/1/012054 DOI: https://doi.org/10.1088/1757-899X/334/1/012054

Teuku Rihayat, Suryani, Satriananda, Ridwan, Nurhanifa, Alfian Putra, Nia Audina, Muhammad Yunus, Sariadi, Safari, Ramzi Jalal, Nani Siska Putri Khan, Saifuddin. (2018). Influence of coating polyurethane with mixture of bentonite and chitosan nanocomposites. AIP Conference Proceedings, Vol. 2049, 1-6. Retrieved from https://doi.org/10.1063/1.5082425 DOI: https://doi.org/10.1063/1.5082425

Tosati, J. V; de Oliveira, E.F.; Oliveira, J.V.; Nitin, N.; Monteiro, A.R. (2018) Light-activated antimicrobial activity of turmeric residue edible coatings against cross-contamination of Listeria innocua on sausages. Food Control. 84, 177-185. Retrieved from https://doi.org/10.1016/j.foodcont.2017.07.026 DOI: https://doi.org/10.1016/j.foodcont.2017.07.026

Zejun Xu, Danyang Wang, Yanqin Cheng, Mingshi Yang, Lin-Ping Wu. (2018) Polyester based nanovehicles for siRNA delivery. Materials Science and Engineering: C. 92, 1006-1015. Retrieved from https://doi.org/10.1016/j.msec.2018.05.031 DOI: https://doi.org/10.1016/j.msec.2018.05.031

Zibiao Li, Beng Hoon Tan, Tingting Lin, Chaobin He. (2016) Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Progress in Polymer Science. 62, 22-72. Retrieved from https://doi.org/10.1016/j.progpolymsci.2016.05.003 DOI: https://doi.org/10.1016/j.progpolymsci.2016.05.003

Zulkifli , Teuku Rihayat, Suryani , Facraniah , Ummi Habibah, Nia Audina, Teuku Fauzi, Nurhanifa , Zaimahwati, Rosalina. (2018) Purification process of jelantah oil using active chorcoal kepok's banana. AIP Conference Proceedings. 1, 1-6.]. Retrieved from https://doi.org/10.1063/1.5082427 DOI: https://doi.org/10.1063/1.5082427

Downloads

Published

2021-11-30

How to Cite

Suryani, Rihayat, T., Setiawati, E., & Aidy, N. (2021). PROMOTION OF POLYLACTID ACID ECO-FRIENDLY BY COMBINED ADDITION OF PCL CATECHIN-CHITOSAN UNDER EXTRUDING CONDITION. International Journal of Research -GRANTHAALAYAH, 9(11), 85–96. https://doi.org/10.29121/granthaalayah.v9.i11.2021.4380