COMPATIBILIZATION STUDY OF BLENDING POLYMERS PLA-PCL WITH FILLERS CATECHIN-CHITOSAN AS NEW MATERIALS FOR BIOPLASTIC MANUFACTURE

Authors

  • Suryani Salim Department of Chemical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, Aceh 24301, Indonesia
  • Teuku Rihayat Department of Chemical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, Aceh 24301, Indonesia
  • Fitria Department of Dermato Venereology, Medical Faculty, Syiah Kuala University, Aceh 23111, Indonesia
  • Aida Safitri Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Kota Medan 20222, Indonesia

DOI:

https://doi.org/10.29121/granthaalayah.v10.i10.2022.4834

Keywords:

PLA, PCL, Bioplastic, Mechanical properties

Abstract [English]

The use of agents in the form of nanochitosan to develop active bioplastics offers a new way to modify the transport properties and release of active compounds while increasing the mechanical resistance and compatibility between polymers. This study aims to study the effect of mixing two polymers in the form of polylactic acid (PLA) and polycaprolactone (PCL) as a matrix and 10% (w/v) filler. The matrix for bioplastic film-forming was prepared by mixing 8 g PLA and 2 g PCL. The internal film and surface microstructures were characterized by scanning electron microscopy (SEM) and interactions between the particles using FT-IR. Mechanical physical properties were reviewed using ASTM D638. The results show that amount of filler composition promotes a significant change in the microstructure of the film and is associated with to improve properties. The amount of nanochitosan (0.9 g) and catechin (0.1) was homogeneously distributed. As a consequence. However, when the filler composition is varied in other quantities, the tensile strength will fluctuate.

Downloads

Download data is not yet available.

References

Ashothaman, A., Sudha, J., and Senthilkumar, N. (2021). A Comprehensive Review on Biodegradable Polylactic Acid Polymer Matrix Composite Material Reinforced With Synthetic and Natural Fibers. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.07.047. DOI: https://doi.org/10.1016/j.matpr.2021.07.047

Barone, A. S., Matheus, J. R. V., De Souza, T. S. P., Moreira, R. F. A., and Fai, A. E. C. (2021). Green‐Based Active Packaging : Opportunities Beyond COVID‐19, Food Applications, and Perspectives In Circular Economy-A Brief Review. Comprehensive Reviews In Food Science And Food Safety, 20(5), 4881-4905. https://doi.org/10.1111/1541-4337.12812. DOI: https://doi.org/10.1111/1541-4337.12812

Chuesiang, P., Sanguandeekul, R., and Siripatrawan, U. (2021). Enhancing Effect of Nanoemulsion on Antimicrobial Activity of Cinnamon Essential Oil Against Foodborne Pathogens in Refrigerated Asian Seabass (Lates Calcarifer) Fillets. Food Control, 122. https://doi.org/10.1016/j.foodcont.2020.107782. DOI: https://doi.org/10.1016/j.foodcont.2020.107782

El Assimi, T., Beniazza, R., Raihane, M., Youcef, H. B., El Meziane, A., Kricheldorf, H., and Lahcini, M. (2022). Overview on Progress in Polysaccharides and Aliphatic Polyesters as Coating of Water-Soluble Fertilizers. Journal of Coatings Technology and Research, 1-19. https://doi.org/10.1007/s11998-022-00613-1. DOI: https://doi.org/10.1007/s11998-022-00613-1

Firouz, M. S., Mohi-Alden, K., and Omid, M. (2021). A Critical Review on Intelligent and Active Packaging in the Food Industry: Research and Development. Food Research International, 141. https://doi.org/10.1016/j.foodres.2021.110113. DOI: https://doi.org/10.1016/j.foodres.2021.110113

Ganewatta, M. S., Wang, Z., and Tang, C. (2021). Chemical Syntheses of Bioinspired and Biomimetic Polymers Toward Biobased Materials. Nature Reviews Chemistry, 5(11), 753-772. https://doi.org/10.1038/s41570-021-00325-x. DOI: https://doi.org/10.1038/s41570-021-00325-x

Joseph, S. M., Krishnamoorthy, S., Paranthaman, R., Moses, J. A., and Anandharamakrishnan, C. (2021). A Review on Source-Specific Chemistry, Functionality, and Applications of Chitin and Chitosan. Carbohydrate Polymer Technologies and Applications, 2. https://doi.org/10.1016/j.carpta.2021.100036. DOI: https://doi.org/10.1016/j.carpta.2021.100036

Ju, J., Chen, X., Xie, Y., Yu, H., Guo, Y., Cheng, Y., Qian, H., and Yao, W. (2019). Application of Essential Oil as a Sustained Release Preparation in Food Packaging. Trends in Food Science and Technology, 92, 22-32. https://doi.org/10.1016/j.tifs.2019.08.005. DOI: https://doi.org/10.1016/j.tifs.2019.08.005

Lin, C., Liu, L., Liu, Y., and Leng, J. (2021). Recent Developments in Next-Generation Occlusion Devices. Acta Biomaterialia, 128, 100-119. https://doi.org/10.1016/j.actbio.2021.04.050 DOI: https://doi.org/10.1016/j.actbio.2021.04.050

Liu, L., Xu, Y., Pan, Y., Xu, M., Di, Y., and Li, B. (2021). Facile Synthesis of an Efficient Phosphonamide Flame Retardant for Simultaneous Enhancement of Fire Safety and Crystallization Rate of Poly (Lactic Acid). Chemical Engineering Journal, 421. https://doi.org/10.1016/j.cej.2020.127761. DOI: https://doi.org/10.1016/j.cej.2020.127761

Liu, S., Yu, J., Li, H., Wang, K., Wu, G., Wang, B., Liu, M., Zhang, Y., Wang, P., Zhang, J., Wu, J., Jing, Y.,Li, F., and Zhang, M. (2020). Controllable Drug Release Behavior of Polylactic Acid (PLA) Surgical Suture Coating With Ciprofloxacin (CPFX)-Polycaprolactone (PCL)/Polyglycolide (PGA). Polymers, 12(2). https://doi.org/10.3390/polym12020288. DOI: https://doi.org/10.3390/polym12020288

Luckachan, G. E., and Pillai, C. K. S. (2011). Biodegradable Polymers-A Review on Recent Trends and Emerging Perspectives. Journal of Polymers and The Environment, 19(3), 637-676. https://doi.org/10.1007/s10924-011-0317-1. DOI: https://doi.org/10.1007/s10924-011-0317-1

Martinez Villadiego, K., Arias Tapia, M. J., Useche, J., and Escobar Macías, D. (2021). Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review. Journal of Polymers and The Environment, 1-17. https://doi.org/10.1007/s10924-021-02207-1 DOI: https://doi.org/10.1007/s10924-021-02207-1

Mohamed, R. M., and Yusoh, K. (2016). A Review on the Recent Research of Polycaprolactone (PCL). Advanced Materials Research, 1134, 249-255. https://doi.org/10.4028/www.scientific.net/AMR.1134.249. DOI: https://doi.org/10.4028/www.scientific.net/AMR.1134.249

Nabgui, A., El Assimi, T., El Meziane, A., Luinstra, G. A., Raihane, M., Gouhier, G., Thébaulte, P., Draouig, K., and Lahcini, M. (2021). Synthesis and Antibacterial Behavior of Bio-Composite Materials-Based on Poly (Ε-Caprolactone)/Bentonite. European Polymer Journal, 156. https://doi.org/10.1016/j.eurpolymj.2021.110602. DOI: https://doi.org/10.1016/j.eurpolymj.2021.110602

Patti, A., and Acierno, D. (2022). Towards the Sustainability of the Plastic Industry Through Biopolymers: Properties and Potential Applications To The Textiles World. Polymers, 14(4), 692. https://doi.org/10.3390/polym14040692. DOI: https://doi.org/10.3390/polym14040692

Rihayat, T. (2010). Synthesis and Properties of Biobased Polyurethane/Montmorillonite Nanocomposites. International Journal of Materials and Metallurgical Engineering, 4(5), 341-345.

Rihayat, T., Hadi, A. E., Aidy, N., Safitri, A., Siregar, J. P., Cionita, T., Irawan, A.P., Hamdan, M. H. M. and Fitriyana, D. F. (2021). Biodegradation of Polylactic Acid-Based Bio Composites Reinforced With Chitosan and Essential Oils as Anti-Microbial Material for Food Packaging. Polymers, 13(22). https://doi.org/10.3390/polym13224019. DOI: https://doi.org/10.3390/polym13224019

Salim, S., Rihayat, T., Riskina, S., and Safitri, A. (2021). Physical and Mechanical Properties of Bamboo/Flax Fibre Reinforced Epoxy Composite Water Absorption Behaviour and High-Temperature Conditions. Plastics, Rubber and Composites, 50(8), 415-424. https://doi.org/10.1080/14658011.2021.1910776. DOI: https://doi.org/10.1080/14658011.2021.1910776

Shen, Y., Ni, Z. J., Thakur, K., Zhang, J. G., Hu, F., and Wei, Z. J. (2021). Preparation and Characterization of Clove Essential Oil Loaded Nanoemulsion and Pickering Emulsion Activated Pullulan-Gelatin Based Edible Film. International Journal of Biological Macromolecules, 181, 528-539. https://doi.org/10.1016/j.ijbiomac.2021.03.133. DOI: https://doi.org/10.1016/j.ijbiomac.2021.03.133

Sid, S., Mor, R. S., Kishore, A., and Sharanagat, V. S. (2021). Bio-Sourced Polymers as Alternatives to Conventional Food Packaging Materials : A Review. Trends in Food Science and Technology, 115, 87-104. https://doi.org/10.1016/j.tifs.2021.06.026. DOI: https://doi.org/10.1016/j.tifs.2021.06.026

Siracusa, V., and Blanco, I. (2020). Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly (Ethylene Terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Polymers, 12(8). https://doi.org/10.3390/polym12081641. DOI: https://doi.org/10.3390/polym12081641

Sucinda, E. F., Majid, M. A., Ridzuan, M. J. M., Cheng, E. M., Alshahrani, H. A., and Mamat, N. (2021). Development and Characterisation of Packaging Film from Napier Cellulose Nanowhisker Reinforced Polylactic Acid (PLA) Bionanocomposites. International Journal of Biological Macromolecules, 187, 43-53. https://doi.org/10.1016/j.ijbiomac.2021.07.069. DOI: https://doi.org/10.1016/j.ijbiomac.2021.07.069

Suryani, Agusnar, H., Wirjosentono, B., Rihayat, T., and Nurhanifa. (2018). Thermal Degradation of Aceh's Bentonite Reinforced Poly Lactic Acid (PLA) Based on Renewable Resources for Packaging Application. In AIP Conference Proceedings. AIP Publishing LLC, 2049(1), 020040. https://doi.org/10.1063/1.5082445. DOI: https://doi.org/10.1063/1.5082445

Syafiq, R., Sapuan, S. M., and Zuhri, M. R. M. (2021). Antimicrobial Activity, Physical, Mechanical and Barrier Properties of Sugar Palm Based Nanocellulose/Starch Biocomposite Films Incorporated With Cinnamon Essential Oil. Journal of Materials Research and Technology, 11, 144-157. https://doi.org/10.1016/j.jmrt.2020.12.091. DOI: https://doi.org/10.1016/j.jmrt.2020.12.091

Temesgen, S., Rennert, M., Tesfaye, T., and Nase, M. (2021). Review on Spinning of Biopolymer Fibers from Starch. Polymers, 13(7). https://doi.org/10.3390/polym13071121. DOI: https://doi.org/10.3390/polym13071121

Termizi, M. N. H., Rasidi, M. S. M., Zainuddin, F., and Masa, A. H. (2022). Mechanical and Morphological Properties of Pure Α-Cellulose-Filled Polylactic Acid (PLA) Biocomposite. In AIP Conference Proceedings. AIP Publishing LLC, 2496 (1), 020008. https://doi.org/10.1063/5.0090708. DOI: https://doi.org/10.1063/5.0090708

Tezara, C., Hadi, A. E., Siregar, J. P., Muhamad, Z., Hamdan, M. H. M., Oumer, A. N., Jaafar, J., Irawan, A. P., Rihayat, T. and Fitriyana, D. F. (2021). The Effect of Hybridisation on Mechanical Properties and Water Absorption Behaviour of Woven Jute/Ramie Reinforced Epoxy Composites. Polymers, 13(17). https://doi.org/10.3390/polym13172964. DOI: https://doi.org/10.3390/polym13172964

Vieira, I. R. S., De Carvalho, A. P. A. D., and Conte-Junior, C. A. (2022). Recent Advances In Biobased And Biodegradable Polymer Nanocomposites, Nanoparticles, and Natural Antioxidants for Antibacterial and Antioxidant Food Packaging Applications. Comprehensive Reviews In Food Science and Food Safety, 21(4), 3673-3716. https://doi.org/10.1111/1541-4337.12990. DOI: https://doi.org/10.1111/1541-4337.12990

Da Costa Monção, É., Grisi, C. V. B., De Moura Fernandes, J., Souza, P. S., and Souza, A. L. (2021). Active Packaging for Lipid Foods and Development Challenges For Marketing. Food Bioscience. https://doi.org/10.1016/j.fbio.2021.101370. DOI: https://doi.org/10.1016/j.fbio.2021.101370

Downloads

Published

2022-11-14

How to Cite

Salim, S., Rihayat, T., Fitria, & Safitri, A. (2022). COMPATIBILIZATION STUDY OF BLENDING POLYMERS PLA-PCL WITH FILLERS CATECHIN-CHITOSAN AS NEW MATERIALS FOR BIOPLASTIC MANUFACTURE. International Journal of Research -GRANTHAALAYAH, 10(10), 241–250. https://doi.org/10.29121/granthaalayah.v10.i10.2022.4834

Most read articles by the same author(s)