COMPATIBILIZATION STUDY OF BLENDING POLYMERS PLA-PCL WITH FILLERS CATECHIN-CHITOSAN AS NEW MATERIALS FOR BIOPLASTIC MANUFACTURE
DOI:
https://doi.org/10.29121/granthaalayah.v10.i10.2022.4834Keywords:
PLA, PCL, Bioplastic, Mechanical propertiesAbstract [English]
The use of agents in the form of nanochitosan to develop active bioplastics offers a new way to modify the transport properties and release of active compounds while increasing the mechanical resistance and compatibility between polymers. This study aims to study the effect of mixing two polymers in the form of polylactic acid (PLA) and polycaprolactone (PCL) as a matrix and 10% (w/v) filler. The matrix for bioplastic film-forming was prepared by mixing 8 g PLA and 2 g PCL. The internal film and surface microstructures were characterized by scanning electron microscopy (SEM) and interactions between the particles using FT-IR. Mechanical physical properties were reviewed using ASTM D638. The results show that amount of filler composition promotes a significant change in the microstructure of the film and is associated with to improve properties. The amount of nanochitosan (0.9 g) and catechin (0.1) was homogeneously distributed. As a consequence. However, when the filler composition is varied in other quantities, the tensile strength will fluctuate.
Downloads
References
Ashothaman, A., Sudha, J., and Senthilkumar, N. (2021). A Comprehensive Review on Biodegradable Polylactic Acid Polymer Matrix Composite Material Reinforced With Synthetic and Natural Fibers. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.07.047. DOI: https://doi.org/10.1016/j.matpr.2021.07.047
Barone, A. S., Matheus, J. R. V., De Souza, T. S. P., Moreira, R. F. A., and Fai, A. E. C. (2021). Green‐Based Active Packaging : Opportunities Beyond COVID‐19, Food Applications, and Perspectives In Circular Economy-A Brief Review. Comprehensive Reviews In Food Science And Food Safety, 20(5), 4881-4905. https://doi.org/10.1111/1541-4337.12812. DOI: https://doi.org/10.1111/1541-4337.12812
Chuesiang, P., Sanguandeekul, R., and Siripatrawan, U. (2021). Enhancing Effect of Nanoemulsion on Antimicrobial Activity of Cinnamon Essential Oil Against Foodborne Pathogens in Refrigerated Asian Seabass (Lates Calcarifer) Fillets. Food Control, 122. https://doi.org/10.1016/j.foodcont.2020.107782. DOI: https://doi.org/10.1016/j.foodcont.2020.107782
El Assimi, T., Beniazza, R., Raihane, M., Youcef, H. B., El Meziane, A., Kricheldorf, H., and Lahcini, M. (2022). Overview on Progress in Polysaccharides and Aliphatic Polyesters as Coating of Water-Soluble Fertilizers. Journal of Coatings Technology and Research, 1-19. https://doi.org/10.1007/s11998-022-00613-1. DOI: https://doi.org/10.1007/s11998-022-00613-1
Firouz, M. S., Mohi-Alden, K., and Omid, M. (2021). A Critical Review on Intelligent and Active Packaging in the Food Industry: Research and Development. Food Research International, 141. https://doi.org/10.1016/j.foodres.2021.110113. DOI: https://doi.org/10.1016/j.foodres.2021.110113
Ganewatta, M. S., Wang, Z., and Tang, C. (2021). Chemical Syntheses of Bioinspired and Biomimetic Polymers Toward Biobased Materials. Nature Reviews Chemistry, 5(11), 753-772. https://doi.org/10.1038/s41570-021-00325-x. DOI: https://doi.org/10.1038/s41570-021-00325-x
Joseph, S. M., Krishnamoorthy, S., Paranthaman, R., Moses, J. A., and Anandharamakrishnan, C. (2021). A Review on Source-Specific Chemistry, Functionality, and Applications of Chitin and Chitosan. Carbohydrate Polymer Technologies and Applications, 2. https://doi.org/10.1016/j.carpta.2021.100036. DOI: https://doi.org/10.1016/j.carpta.2021.100036
Ju, J., Chen, X., Xie, Y., Yu, H., Guo, Y., Cheng, Y., Qian, H., and Yao, W. (2019). Application of Essential Oil as a Sustained Release Preparation in Food Packaging. Trends in Food Science and Technology, 92, 22-32. https://doi.org/10.1016/j.tifs.2019.08.005. DOI: https://doi.org/10.1016/j.tifs.2019.08.005
Lin, C., Liu, L., Liu, Y., and Leng, J. (2021). Recent Developments in Next-Generation Occlusion Devices. Acta Biomaterialia, 128, 100-119. https://doi.org/10.1016/j.actbio.2021.04.050 DOI: https://doi.org/10.1016/j.actbio.2021.04.050
Liu, L., Xu, Y., Pan, Y., Xu, M., Di, Y., and Li, B. (2021). Facile Synthesis of an Efficient Phosphonamide Flame Retardant for Simultaneous Enhancement of Fire Safety and Crystallization Rate of Poly (Lactic Acid). Chemical Engineering Journal, 421. https://doi.org/10.1016/j.cej.2020.127761. DOI: https://doi.org/10.1016/j.cej.2020.127761
Liu, S., Yu, J., Li, H., Wang, K., Wu, G., Wang, B., Liu, M., Zhang, Y., Wang, P., Zhang, J., Wu, J., Jing, Y.,Li, F., and Zhang, M. (2020). Controllable Drug Release Behavior of Polylactic Acid (PLA) Surgical Suture Coating With Ciprofloxacin (CPFX)-Polycaprolactone (PCL)/Polyglycolide (PGA). Polymers, 12(2). https://doi.org/10.3390/polym12020288. DOI: https://doi.org/10.3390/polym12020288
Luckachan, G. E., and Pillai, C. K. S. (2011). Biodegradable Polymers-A Review on Recent Trends and Emerging Perspectives. Journal of Polymers and The Environment, 19(3), 637-676. https://doi.org/10.1007/s10924-011-0317-1. DOI: https://doi.org/10.1007/s10924-011-0317-1
Martinez Villadiego, K., Arias Tapia, M. J., Useche, J., and Escobar Macías, D. (2021). Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review. Journal of Polymers and The Environment, 1-17. https://doi.org/10.1007/s10924-021-02207-1 DOI: https://doi.org/10.1007/s10924-021-02207-1
Mohamed, R. M., and Yusoh, K. (2016). A Review on the Recent Research of Polycaprolactone (PCL). Advanced Materials Research, 1134, 249-255. https://doi.org/10.4028/www.scientific.net/AMR.1134.249. DOI: https://doi.org/10.4028/www.scientific.net/AMR.1134.249
Nabgui, A., El Assimi, T., El Meziane, A., Luinstra, G. A., Raihane, M., Gouhier, G., Thébaulte, P., Draouig, K., and Lahcini, M. (2021). Synthesis and Antibacterial Behavior of Bio-Composite Materials-Based on Poly (Ε-Caprolactone)/Bentonite. European Polymer Journal, 156. https://doi.org/10.1016/j.eurpolymj.2021.110602. DOI: https://doi.org/10.1016/j.eurpolymj.2021.110602
Patti, A., and Acierno, D. (2022). Towards the Sustainability of the Plastic Industry Through Biopolymers: Properties and Potential Applications To The Textiles World. Polymers, 14(4), 692. https://doi.org/10.3390/polym14040692. DOI: https://doi.org/10.3390/polym14040692
Rihayat, T. (2010). Synthesis and Properties of Biobased Polyurethane/Montmorillonite Nanocomposites. International Journal of Materials and Metallurgical Engineering, 4(5), 341-345.
Rihayat, T., Hadi, A. E., Aidy, N., Safitri, A., Siregar, J. P., Cionita, T., Irawan, A.P., Hamdan, M. H. M. and Fitriyana, D. F. (2021). Biodegradation of Polylactic Acid-Based Bio Composites Reinforced With Chitosan and Essential Oils as Anti-Microbial Material for Food Packaging. Polymers, 13(22). https://doi.org/10.3390/polym13224019. DOI: https://doi.org/10.3390/polym13224019
Salim, S., Rihayat, T., Riskina, S., and Safitri, A. (2021). Physical and Mechanical Properties of Bamboo/Flax Fibre Reinforced Epoxy Composite Water Absorption Behaviour and High-Temperature Conditions. Plastics, Rubber and Composites, 50(8), 415-424. https://doi.org/10.1080/14658011.2021.1910776. DOI: https://doi.org/10.1080/14658011.2021.1910776
Shen, Y., Ni, Z. J., Thakur, K., Zhang, J. G., Hu, F., and Wei, Z. J. (2021). Preparation and Characterization of Clove Essential Oil Loaded Nanoemulsion and Pickering Emulsion Activated Pullulan-Gelatin Based Edible Film. International Journal of Biological Macromolecules, 181, 528-539. https://doi.org/10.1016/j.ijbiomac.2021.03.133. DOI: https://doi.org/10.1016/j.ijbiomac.2021.03.133
Sid, S., Mor, R. S., Kishore, A., and Sharanagat, V. S. (2021). Bio-Sourced Polymers as Alternatives to Conventional Food Packaging Materials : A Review. Trends in Food Science and Technology, 115, 87-104. https://doi.org/10.1016/j.tifs.2021.06.026. DOI: https://doi.org/10.1016/j.tifs.2021.06.026
Siracusa, V., and Blanco, I. (2020). Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly (Ethylene Terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Polymers, 12(8). https://doi.org/10.3390/polym12081641. DOI: https://doi.org/10.3390/polym12081641
Sucinda, E. F., Majid, M. A., Ridzuan, M. J. M., Cheng, E. M., Alshahrani, H. A., and Mamat, N. (2021). Development and Characterisation of Packaging Film from Napier Cellulose Nanowhisker Reinforced Polylactic Acid (PLA) Bionanocomposites. International Journal of Biological Macromolecules, 187, 43-53. https://doi.org/10.1016/j.ijbiomac.2021.07.069. DOI: https://doi.org/10.1016/j.ijbiomac.2021.07.069
Suryani, Agusnar, H., Wirjosentono, B., Rihayat, T., and Nurhanifa. (2018). Thermal Degradation of Aceh's Bentonite Reinforced Poly Lactic Acid (PLA) Based on Renewable Resources for Packaging Application. In AIP Conference Proceedings. AIP Publishing LLC, 2049(1), 020040. https://doi.org/10.1063/1.5082445. DOI: https://doi.org/10.1063/1.5082445
Syafiq, R., Sapuan, S. M., and Zuhri, M. R. M. (2021). Antimicrobial Activity, Physical, Mechanical and Barrier Properties of Sugar Palm Based Nanocellulose/Starch Biocomposite Films Incorporated With Cinnamon Essential Oil. Journal of Materials Research and Technology, 11, 144-157. https://doi.org/10.1016/j.jmrt.2020.12.091. DOI: https://doi.org/10.1016/j.jmrt.2020.12.091
Temesgen, S., Rennert, M., Tesfaye, T., and Nase, M. (2021). Review on Spinning of Biopolymer Fibers from Starch. Polymers, 13(7). https://doi.org/10.3390/polym13071121. DOI: https://doi.org/10.3390/polym13071121
Termizi, M. N. H., Rasidi, M. S. M., Zainuddin, F., and Masa, A. H. (2022). Mechanical and Morphological Properties of Pure Α-Cellulose-Filled Polylactic Acid (PLA) Biocomposite. In AIP Conference Proceedings. AIP Publishing LLC, 2496 (1), 020008. https://doi.org/10.1063/5.0090708. DOI: https://doi.org/10.1063/5.0090708
Tezara, C., Hadi, A. E., Siregar, J. P., Muhamad, Z., Hamdan, M. H. M., Oumer, A. N., Jaafar, J., Irawan, A. P., Rihayat, T. and Fitriyana, D. F. (2021). The Effect of Hybridisation on Mechanical Properties and Water Absorption Behaviour of Woven Jute/Ramie Reinforced Epoxy Composites. Polymers, 13(17). https://doi.org/10.3390/polym13172964. DOI: https://doi.org/10.3390/polym13172964
Vieira, I. R. S., De Carvalho, A. P. A. D., and Conte-Junior, C. A. (2022). Recent Advances In Biobased And Biodegradable Polymer Nanocomposites, Nanoparticles, and Natural Antioxidants for Antibacterial and Antioxidant Food Packaging Applications. Comprehensive Reviews In Food Science and Food Safety, 21(4), 3673-3716. https://doi.org/10.1111/1541-4337.12990. DOI: https://doi.org/10.1111/1541-4337.12990
Da Costa Monção, É., Grisi, C. V. B., De Moura Fernandes, J., Souza, P. S., and Souza, A. L. (2021). Active Packaging for Lipid Foods and Development Challenges For Marketing. Food Bioscience. https://doi.org/10.1016/j.fbio.2021.101370. DOI: https://doi.org/10.1016/j.fbio.2021.101370
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Suryani Salim, Teuku Rihayat, Fitria, Aida Safitri
This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.