ESTIMATION OF NUCLEAR FUSION REQUIREMENTS IN BUBBLES DURING ULTRA-HIGH-PRESSURE, ULTRA-HIGH-TEMPERATURE CAVITATION PROMOTED BY MAGNETIC FIELD
DOI:
https://doi.org/10.29121/ijoest.v5.i6.2021.257Keywords:
Multifunction Cavitation, High-Pressure High-Temperature Cavitation, Bubble Fusion, Magnetic Field, Charged Cavitation Bubbles, Lorentz ForceAbstract
In the present work, a strong magnetic field was applied near the outlet of the water jet nozzle to promote the generation of multifunction cavitation bubbles. Because these bubbles contained charged species, the bubbles experienced a Lorentz force due to the magnetic field and collided with greater force. As such, the internal bubble pressure exceeded the threshold value required for fusion to occur. The expansion of these charged bubbles in response to ultrasonic irradiation affected adjacent charged bubbles so that the energy density of the atoms in the bubbles was greater than the fusion threshold. The results of this work strongly suggest that the formation of bubbles via the UTPC process in conjunction with a strong magnetic field may result in bubble fusion.
Downloads
References
Arakeri H V. (2003) Sonoluminescence and bubble fusion. Current Science ; 85(7) : 911-916. Retrieved from https://www.jstor.org/stable/24108772
Atchley A. (1989) The Blake threshold of cavitation nucleus having a radius-dependent surface tension. J. Acoust. Soc. Am. ; 85(1) : 152-157. Retrieved from https://doi.org/10.1121/1.397724
Barber B P, Hiller R A, Ritva L S, Putterman J K, Weninger R. (1997) Defining the unknowns of sonoluminescence. Phys Rep. ; 281 : 65-143. Retrieved from https://doi.org/10.1016/S0370-1573(96)00050-6
Barber B P, Putterman S. (1991) Observation of synchronous picosecond sonoluminescence. Nature ; 352 : 318-320. Retrieved from https://doi.org/10.1038/352318a0
Gaitan D F, Crum Lawrence A, Church C C, Roy R A. (1992) Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. Journal of the Acoustical Society of America ; 91(6) : 3166-3183. Retrieved from https://doi.org/10.1121/1.402855
Gompf B, Gunther R, Nick G, Pecha R, Eisenmenger W. (1997) Resolving sonoluminescence pulse width with time-correlated single photon counting. Phys Rev Lett. ; 79 : 1405-1408. Retrieved from https://doi.org/10.1103/PhysRevLett.79.1405
Ijiri M, Yamaguchi K, Kikuchi S, Kato F, Kunieda Y, Sakurai H, Ogi T, Yoshimura T. (2021) Formation of a phosphoric acid compound film on an AZ31 magnesium alloy surface using cavitation bubbles. Surface and Interfaces ; 25 : 101194-1-11. Retrieved from https://doi.org/10.1016/j.surfin.2021.101194
Keller J B, Miksis M. (1980) Bubble oscillations of large amplitude. Journal of the Acoustical Society of America ; 68 (2) : 628-633. Retrieved from https://doi.org/10.1121/1.384720
Kling CL. (1970) A High speed photographic study of cavitation bubble collapse. University Michigan Report No. 03371-2-T : 08466-7-T. Retrieved fromhttps://apps.dtic.mil/sti/citations/AD0705375
Plesset M W. (1949) The dynamics of cavitation bubbles. Journal of Applied Mechanics: 16277-16282. Retrieved from https://doi.org/10.1115/1.4009975
Putterman S, Weninger K. (2000) Sonoluminescence : How bubbles turn sound into light. Ann Rev Fluid Mech. ; 32 : 445-476. Retrieved from https://doi.org/10.1146/annurev.fluid.32.1.445
Rayleigh L. (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Philosophical Magazine ; 34(200) : 94-98. Retrieved from https://doi.org/10.1080/14786440808635681
Seife C. (2002) Bubble Fusion Paper Generates A Tempest in a Beaker. Science ; 295 :1808-1809. Retrieved from https://doi.org/10.1126/science.295.5561.1808
Storey B D, Szeri A J. (2000) Water vapor sonoluminescence and sonochemistry. Proc. R. Soc. London Ser. A. ; 456 : 1685-1709. Retrieved from https://doi.org/10.1098/rspa.2000.0582
Summers D. (1987) Consideration in the design of a waterjet device for reclamation of missile casings. Proc of the 4th U.S. Water Jet Conference, The University of California, Berkeley : 82-89. Retrieved from https://scholarsmine.mst.edu/min_nuceng_facwork/157/
Taleyarkhan R P, West C D, Cho J S, Lahey R T, Nigmatulin Jr R, Block R C. (2002) Evidence for Nuclear Emissions During Acoustic Cavitation. (Http : //www.sciencemag.org/feature/data/hottopics/bubble/index.shtml), Science ; 295 : 1868 -1873. Retrieved from https://doi.org/10.1126/science.1067589
Yoshimura T, Iwamoto M, Ogi T, Kato F, Ijiri M, Kikuchi S. (2021a) Peening Natural Aging of Aluminum Alloy by Ultra-High-Temperature and High-Pressure Cavitation. Applied Sciences ; 11(2894) : 1-13. Retrieved from https://doi.org/10.3390/app11072894
Yoshimura T, Nishijima N, Hashimoto D, Ijiri M. (2021c) Sonoluminescence from ultra-high temperature and pressure cavitation produced by a narrow water jet. Heliyon; 7(8) E07767:1-8. Retrieved from https://doi.org/10.1016/j.heliyon.2021.e07767
Yoshimura T, Shimonishi D, Hashimoto D, Nishijima N, Ijiri M. (2021b) Effect of Processing Degree and Nozzle Diameter on Multifunction Cavitation. Surface Engineering and Applied Electrochemistry ; 57(1) : 101-106. Retrieved from https://doi.org/10.3103/S1068375521010154
Yoshimura T, Tanaka K, Ijiri M. (2018b) Nanolevel surface processing of fine particles by waterjet cavitation and multifunction cavitation to improve the photocatalytic properties of titanium oxide. IntechOpen Cavitation doi: 10.5772/intechopen.79530, IntechOpen Limited, 5 Princes Gate Court, London, SW7 2QJ, UK. Retrieved from https://doi.org/10.5772/intechopen.79530
Yoshimura T, Tanaka K, Yoshinaga, N. (2018a) Nano-level Material Processing by Multifunction Cavitation. Nanoscience & Nanotechnology-Asia ; 8(1) : 41-54. Retrieved from https://doi.org/10.2174/2210681206666160922164202
Yoshimura T, Yoshiya H, Tanaka K, Ijiri M. (2018c) Estimation of Bubble Fusion Requirements during High-Pressure, High-Temperature Cavitation. Int J Adv Technol. : doi :10.4172/0976-4860.1000206 Retrieved from https://doi.org/10.4172/0976-4860.1000206
Young J B, Schmiedel, T, Kang W. (1996) Sonoluminescence in High Magnetic Fields. Phys Rev Lett. ; 77(23) : 4816-4819. Retrieved from https://doi.org/10.1103/PhysRevLett.77.4816
Zoghi-Foumani N, Sadighi-Bonabi R. (2014) Investigating the possibility of Sonofusion in Deuterated acetone. International Journal of Hydrogen Energy ; 39 (21) : 11328-11335 Retrieved from https://doi.org/10.1016/j.ijhydene.2014.04.084