PHOTOLYSIS OF FLUORENE AND 9-FLUORENONE A TOXIC ENVIRONMENTAL CONTAMINANT: STUDIES IN THE EFFECT OF SOLVENT AND INTENSITY OF THE SOURCE
DOI:
https://doi.org/10.29121/ijetmr.v4.i12.2017.591Keywords:
Photolysis, 9-Fluorenone;, Acetonitrile, Benzene, AcetoneAbstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of genotoxic environmental
contaminants and are always exposed to solar radiations. Fluorenes are important PAHs
widely distributed in nature and hence the studies in the effect of light on them are of ulmost
significance. Therefore in this paper, we have studied the photo irradiations of fluorene (1)
and 9-fluorenone (2) with UV light in different solvents, which results in the formation of
different products.
Downloads
References
Sandford S. A., Bernstein M. P., Allamandola L. J., Gillette J. S. and Zare R. N., Deuterium enrichment of polycyclic aromatic hydrocarbons by photo chemically induced exchange with deuterium-rich cosmic ices, Astrophys. J., 538 (2 Pt 1), 691-697, (2000). DOI: https://doi.org/10.1086/309147
Warner S. D., Farant J. P. and Butler I. S., Photochemical degradation of selected nitro polycyclic aromatic hydrocarbons in solution and adsorbed to solid particles, Chemosphere, 54 (8), 1207-1215, (2004). DOI: https://doi.org/10.1016/j.chemosphere.2003.09.020
Adam W., Berger M., Cadet J., Dall'Acqua F., Epe B., Frank S., Ramaiah D., Raoul S., Saha Moller C. R. and Vedaldi D., Photochemistry and photobiology of furo coumarin hydro -peroxides derived from imperatorin: novel intercalating photo-fenton reagents for oxidative DNA modification by hydroxyl radicals, Photochem. Photobiol., 63, 768-778, (1996).
Reed D., Photochemistry of selected nitro-polycyclic aromatic hydrocarbons, Mississippi Acad. Sci. Hattiesburg, Feb 13-14, (MS 2003).
Wang S., Dong S., Hwang H. M., Fu P. P. and Yu H., Solvent effect on the light-induced DNA cleavage by selected polycyclic aromatic hydrocarbons, RCMI Symposium Jackson, April 24-27, (MS 2002).
Dabestani R. T. and Sigman M. E., Adsorption and photochemical behavior of polycyclic aromatic hydrocarbons (PAHs) on a non-semiconductive surface such as silica, J. Adv. Oxi. Tech., 3(3), 315-321, (1998). DOI: https://doi.org/10.1515/jaots-1998-0318
Reyes C., Sigman M. E., Arce R., Barbas J. T. and Dabestani R. T., Photochemistry of acenaphthene at a silica gel/air interface, Photochem. Photobiol. A.: Chem., 112, 277-283, (1998).
Dabestani R. T. and Sigman M. E., Spectroscopy and photochemical transformations of polycyclic aromatic hydrocarbons at silica and alumina-air interfaces, Solid State and Surface Photochem., 4, 01-30, (2000).
Morel M. C., Alers I. and Arce R., Photochemical degradation of 1, 6 and 1, 8-dinitro pyrenes in solution, Polycyclic Arom. Comp., 26(3), 207-219, (2006). DOI: https://doi.org/10.1080/10406630600760576
Hongtao Y., Jian Y., Yuguo J. and Peter P. F., Photochemical reaction of 7, 12-di – methylbenz[a]anthracene (DMBA) and formation of DNA covalent adducts, Int. J. Environ. Res. Public Health, 2(1), 114 –122, (2005). DOI: https://doi.org/10.3390/ijerph2005010114
Babudri F., Bilancia G., Cardone A., Coppo P., DeCola L., Farinola G. M., Hofstraat J. W. and Naso F., Photochemical tuning of light emission in a conjugated polymer containing norbornadiene units in the main chain, Photochem. Photobiol. Sci., 6(4), 361-364, (April 2007). DOI: https://doi.org/10.1039/B611685J
Farwell A. J., Nero V., Croft M., Rhodes S. and Dixon D. G., Phototoxicity of oil sands- derived polycyclic aromatic compounds to Japanese medaka (Oryzias latipes) embryos, Environ. Toxicol. Chem., 25(12), 3266-3274, (Dec 2006). DOI: https://doi.org/10.1897/05-637R1.1
Ohshima S., Ohtsuki T., Kimura E., Yamaguchi M., Toyoshima T. and Takekawa M., Photochemical reaction of 6H-benzo[cd]pyren-6-one (Naphthanthrone), Polycyclic Arom. Comp., 28 (4 & 5), 373 – 381, (Aug 2008). DOI: https://doi.org/10.1080/10406630802435027
Sluszny C., Bulatov V., Gridin V. V. and Schechter I., Photochemical study of anthracene crystallites by fourier transform spectroscopic imaging, Photochem. Photobiol., 74 (6), 780-786, (2001). DOI: https://doi.org/10.1562/0031-8655(2001)074<0780:PSOACB>2.0.CO;2
Jiben M., Wenan W., Daming D., Guoxiang X. and Yongmei W., Solid state photochemistry of nitrogenous heteraromatic compounds, Acta. Chimica Sinica, 5(6), 595-602, (1995).
Sabate J., Bayona J. M. and Solanas A. M., Photolysis of PAHs in aqueous phase by UV irradiation, Chemosphere, 44(2), 119-124, (July 2001). DOI: https://doi.org/10.1016/S0045-6535(00)00208-3
Moeini-Nombel L. and Matsuzawa S., Effect of solvents and a substituent group on photooxidation of fluorene, J. Photochem. Photobiol. A.: Chem., 119, 15-23, (1998).
El-Khouly M. E., Photoinduced intermolecular electron transfer process of fullerene (C60) and amine-substituted fluorenes studied by laser flash photolysis, Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 67(3- 4), 636-642, (July 2007). DOI: https://doi.org/10.1016/j.saa.2006.08.022
Tham Y. W. F. and Sakugawa H., Preliminary study of the photolysis of fluorene in rainwater, Bull. Environ. Contam. Toxicol., 79(6), (Dec 2007). DOI: https://doi.org/10.1007/s00128-007-9309-1
Gimeno O., Rivas F. J., Beltran F. J. and Carbajo M., Photocatalysis of fluorene adsorbed onto TiO2, Chemosphere, 69(4), 595-604, (Sept 2007). DOI: https://doi.org/10.1016/j.chemosphere.2007.03.004
Liu L., Tang S., Liu M., Xie Z., Zhang W., Lu P., Hanif M. and Ma Y., Photodegradation of poly-fluorene and fluorene oligomers with alkyl and aromatic di substitutions, J. Phys. Chem. B., 110 (28), 13734-13740, (20 July 2006). DOI: https://doi.org/10.1021/jp062612x
Barbas J. T., Sigman M. E., Arce R. and Dabestani R., Spectroscopy and photochemistry of fluorene at a silica gel/air interface, J. Photochem. Photobiol.: A. Chem., 109(3), 229-236, (1997).
Verbeek J. M., Cornelisse J. and Lodder G., Photolysis of the vinyl bromide 9-(α-Bromo benzylidene) fluorene in methanol, effect of wavelength of irradiation, sodium methoxide and oxygen, Tetrahedron, 42(20), 5679-5684, (1986). DOI: https://doi.org/10.1016/S0040-4020(01)88173-4
Corredor C. C., Belfield K. D., Bondar M. V., Przhonska O. V. and Yao S. One and two-photon photo chemical stability of linear and branched fluorene derivatives, J. Photochem. Photobiol. A.: Chem., 184(1-2), 105-112 (15 Nov 2006). DOI: https://doi.org/10.1016/j.jphotochem.2006.03.036
Sugawara T., Bethell D. and Iwamura H., Photolysis of 1, 12-bis(diazo)-1,12-dihydro indeno[2,3-a] fluorene, Esr and optical detection of a σ-type 1, 4-biradical, Tetrahedron Lett., 25(22), 2375-2378, (1984). DOI: https://doi.org/10.1016/S0040-4039(01)80259-8
Kawamata K., Kikuchi K., Okada K. and Oda M., Photo isomerization of α-(9-anthryl) ethyl spiro [cyclopropane-1,9'-fluorene]-2-carboxylates studied by stepwise two-color two- photon flash photoly- sis, J. Phys. Chem., 98(8), 2090-2094, (1994). DOI: https://doi.org/10.1021/j100059a018
Downloads
Published
How to Cite
Issue
Section
License
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere.
- That its release has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with International Journal of Engineering Technologies and Management Research agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or edit it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
For More info, please visit CopyRight Section