COMPARATIVE STUDY OF HMM TOPOLOGIES FOR SIGNATURE VERIFICATION (ERGODIC VS. LEFT-TO-RIGHT)

Authors

  • Dr. Vinayak A. Bharadi Information Technology Department, Finolex Academy of Management and Technology, Ratnagiri (MH), India
  • Dr. Manoj Chavan Electronics & Telecommunication Engineering Department, Thakur College of Engineering & Technology, Mumbai, India

DOI:

https://doi.org/10.29121/shodhkosh.v4.i1.2023.6033

Abstract [English]

This research explores the impact of two distinct Hidden Markov Model (HMM) topologies—Ergodic and Left-to-Right—on the performance of online signature verification systems. Using the SVC 2004 dataset and pressure-based hybrid wavelet transform (HWT) features, we systematically evaluate each topology’s classification accuracy, convergence speed, and computational cost. Our experimental framework includes varying the number of HMM states, training samples, and observation symbols to examine how these topologies influence Equal Error Rate (EER), False Acceptance Rate (FAR), and False Rejection Rate (FRR). Results indicate that while Ergodic HMMs provide superior accuracy due to their flexibility, Left-to-Right models converge faster and demand fewer computational resources. This study provides practical recommendations for selecting an HMM topology based on the intended application’s performance and efficiency requirements.

References

Jain, A. K., Flynn, P., & Ross, A. A. (2011). Introduction to Biometrics. Springer. DOI: https://doi.org/10.1007/978-0-387-77326-1

Galbally, J., Marcel, S., & Fierrez, J. (2015). Biometric Antispoofing Methods: A Survey in Face, Iris, and Fingerprint. IEEE TIFS. DOI: https://doi.org/10.1109/ACCESS.2014.2381273

Bengio, Y. (1999). Markovian Models for Sequential Data. Neural Computing Surveys, 2.

Starner, T., Weaver, J., & Pentland, A. (1998). Real-Time ASL Recognition Using HMMs. MIT Media Lab.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Rattani, A., & Derakhshani, R. (2019). A Survey of Online Signature Verification. IEEE Access.

Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models and Selected Applications. IEEE Proceedings. DOI: https://doi.org/10.1016/B978-0-08-051584-7.50027-9

Justino, E. J. R., Bortolozzi, F., & Sabourin, R. (2005). A Comparison of SVM and HMM Classifiers for Signature Verification. PRL. DOI: https://doi.org/10.1016/j.patrec.2004.11.015

Ferrer, M. A., Galbally, J., & Alonso-Fernandez, F. (2020). Exploiting Explainable AI in Signature Verification. PRL.

Kisku, D. R., & Rattani, A. (2021). Lightweight Biometric Recognition for Embedded Systems. Springer.

Kekre, H. B., & Bharadi, V. A. (2014). Hybrid Wavelets Using Orthogonal Transforms. Confluence.

SVC 2004 Dataset: http://www.cse.ust.hk/svc2004

Yilmaz, O., et al. (2020). Deep Pressure-Based Signature Verification. Computers & Security.

Hassanat, A., & Jassim, S. (2022). Efficient HMM Estimation in Biometric Sequences. Expert Systems with Applications.

Rantzsch, H., et al. (2020). Deep Learning Signature Verification via Siamese Networks. PRL.

Duda, R., Hart, P., & Stork, D. (2001). Pattern Classification. Wiley.

Bilmes, J. (1998). A Gentle Tutorial on EM for HMMs. UC Berkeley.

Marasco, E., & Ross, A. (2014). Antispoofing Schemes for Fingerprint Recognition. ACM Surveys. DOI: https://doi.org/10.1145/2617756

Gupta, P., & Gupta, S. (2020). Comparative HMM and CNN-Based Signature Verification. IJCA.

Downloads

Published

2023-06-30

How to Cite

Vinayak A. Bharadi, & Manoj Chavan. (2023). COMPARATIVE STUDY OF HMM TOPOLOGIES FOR SIGNATURE VERIFICATION (ERGODIC VS. LEFT-TO-RIGHT). ShodhKosh: Journal of Visual and Performing Arts, 4(1), 4668–4670. https://doi.org/10.29121/shodhkosh.v4.i1.2023.6033