PARTIAL SLIP EFFECT OF Cu,Au,TiO2-NANO PARTICLE IN STUDY BIO MAGNETIC MAXWELL FLUID FLOW AND HEAT TRANSFER OVER A STRETCHING SHEET IN THA PRESENCE OF MAGNETIC DIPOLE

Authors

  • Channakeshava Murthy Associate Professor, Department of Mathematics, Government First Graed College, Bidar, ,Karnataka, India
  • Manjunatha P T Associate professor, Department of Mathematics, Government Science College, Chitradruga, Karnataka, India.
  • Lokesh T Associate professor, Department of Mathematics, Government Science College, Chitradruga, Karnataka, India.

DOI:

https://doi.org/10.29121/shodhkosh.v3.i2.2022.2608

Abstract [English]

In this paper, we analyzed the Bio magnetic Maxwell fluid flow and heat transfer in a Nano fluid over a stretching sheet in the presence of magnetic dipole. The effects of velocity slip are considered in this study. Three different types of Nano fluids, namely the Copper-blood, the Gold- blood and titanium dioxide-blood are considered. The governing partial differential equations are transformed into ordinary differential equations using suitable transformation. Numerical solutions of these equations are obtained by using maple software. Inside the boundary layer, the variations of velocity, temperature various values of the appearing parameter, namely the ferromagnetic parameter, viscous dissipation parameter ,dimensionless distance, dimensionless curie temperature, Deborah number ,slip parameter are presented graphically and discussed in detail. The obtained results show that Gold has higher rate of heat transfer compared to Copper and Titanium dioxide. A good agreement is found between the present numerical results and the available results in the literature in some specific cases.

References

Haik Y, Pai V and Chen C J.,1999. Biomagnetic fluid dynamics, in fluid dynamics at interfaces. edited by W. Shyy and R. Narayanan (Cambridge University Press, Cambridge), 439-452. 2

Manjunatha, S., Gireesha, B.J., 2016. Effects of variable viscosity and thermalconductivity on MHD flow and heat transferof a dusty fluid, Ain Shams Engineering Joutrnal,7(1), 505-515. 21 DOI: https://doi.org/10.1016/j.asej.2015.01.006

Sajid M, Abbas Z, Ali N, Javed T, Ahmad I.2014. Slip flow of a Maxwell fluid past a stretching sheet. Walailak Journal of Science and Technology. 11(12), 1093-1103

R. Naveen Kumar, A.M. Jyothi, Hesham Alhumade, R.J. Punith Gowda, Mohammad Mahtab Alam, Irfan Ahmad, M.R. Gorji, B.C. Prasannakumara, 2021. Impact of magnetic dipole on thermophoretic particle deposition in the flow of Maxwell fluid over a stretching sheet, Journal of Molecular Liquids,334, 116494. 15 DOI: https://doi.org/10.1016/j.molliq.2021.116494

MOUSAVI, S. M., DARZI, A. A. R., AKBARI, O. A., TOGHRAIE, D., and MARZBAN, A. Numerical study of biomagnetic fluid flow in a duct with a constriction affected by a magnetic field. Journal of Magnetism and Magnetic Materials, 473, 42–50 (2019) DOI: https://doi.org/10.1016/j.jmmm.2018.10.043

USMAN, M., SOOMRO, F. A., HAQ, R. U., WANG, W., and DEFTERLI, O. Thermal and velocity slip effects on Casson nanofluid flow over an inclined permeable stretching cylinder via collocation method. International Journal of Heat and Mass Transfer, 122, 1255–1263 (2018) DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.045

GOODARZI, M., JAVID, S., SAJADIFAR, A., NOJOOMIZADEH, M., and MOTAHARIPOUR, S. H. Slip velocity and temperature jump of a non-Newtonian nanofluid, aqueous solution of carboxy-methyl cellulose/aluminum oxide nanoparticles, through a microtube. International Journal of Numerical Methods for Heat and Fluid Flow, 29(5), 1606–1628 (2019) DOI: https://doi.org/10.1108/HFF-05-2018-0192

SOOMRO, F. A., USMAN, M., HAQ, R. U., and WANG, W. Thermal and velocity slip effects on MHD mixed convection flow of Williamson nanofluid along a vertical surface: modified Legendre wavelets approach. Physica E: Low-dimensional Systems and Nanostructures, 104, 130–137 (2018) DOI: https://doi.org/10.1016/j.physe.2018.07.002

WAQAS, H., IMRAN, M., KHAN, S. U., SHEHZAD, S. A., and MERAJ, M. A. Slip flow of Maxwell viscoelasticity-based micropolar nanoparticles with porous medium: a numerical study. Applied Mathematics and Mechanics (English Edition), 40(9), 1255–1268 (2019) https://doi.org/10.1007/s10483-019-2518-9 DOI: https://doi.org/10.1007/s10483-019-2518-9

F. Mebarek-Oudina, I. Chabani, Review on Nano Enhanced PCMs: Insight on nePCM Application in Thermal Management/Storage Systems, Energies 16 (2023) 1066, https://doi.org/10.3390/en16031066 DOI: https://doi.org/10.3390/en16031066

N. Khan, et al., Maxwell nanofluid fow over an infinite vertical plate with ramped and isothermal wall temperature and concentration, Math. Probl. Eng. (2021), https://doi.org/10.1155/2021/3536773. DOI: https://doi.org/10.1155/2021/3536773

M.B. Hafeez, M. Krawczuk, W. Jamshed, El S.M. Tag El Din, H.A.W. El Khalifa, F. A. Seabee, Thermal energy development in magnetohydrodynamic flow utilizing titanium dioxide, copper oxide and aluminum oxide nanoparticles: Thermal dispersion and heat generating formularization, Front. Energy Res. 10 (2022) 1000796, https://doi.org/10.3389/fenrg.2022.1000796. DOI: https://doi.org/10.3389/fenrg.2022.1000796

Y.-M. Chu, A. Abbasi, K. Al-Khaled, W. Farooq, S.U. Khan, M.I. Khan, S.M. Eldin, K. Guedri, Mathematical modeling and computational outcomes for the thermal oblique stagnation point investigation for non-uniform heat source and nonlinear chemical reactive flow of Maxwell nanofluid, Case Studies in Thermal Engineering 41 (2023), 102626, https://doi.org/10.1016/j.csite.2022.102626. DOI: https://doi.org/10.1016/j.csite.2022.102626

M. Ahmad, E. Rashdy, K. Al-Khaled, M. Rasheed, S.U. Khan, M. Taj, M.I. Khan, S. Elattar, Forced convection three-dimensional Maxwell nanofluid flow due to bidirectional movement of sheet with zero mass flux, Int. Commun. Heat Mass Transfer 135 (2022), 106050, https://doi.org/10.1016/j. icheatmasstransfer.2022.106050. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2022.106050

Y.-X. Li, H. Waqas, K. Al-Khaled, S.A. Khan, M.I. Khan, S.U. Khan, R. Naseem, Y.- M. Chu, Simultaneous features of Wu’s slip, nonlinear thermal radiation and

activation energy in unsteady bio-convective flow of Maxwell nanofluid configured by a stretching cylinder, Chin. J. Phys. 73 (2021) 462–478, https://doi.org/ 10.1016/j.cjph.2021.07.033. DOI: https://doi.org/10.1016/j.cjph.2021.07.033

Ali, F. Mebarek-Oudina, A. Barman, S. Das, A.I. Ismail, Peristaltic transportation of hybrid nano-blood through a ciliated micro-vessel subject to heat source and Lorentz force, J. Therm. Anal. Calorim. 148 (2023) 7059–7083, https://doi.org/ 10.1007/s10973-023-12217. DOI: https://doi.org/10.1007/s10973-023-12217-x

H. Schichting, Boundary Layer Theory, sixth ed., McGrawHill, New York, 1964.

J. Harris, Rheology and Non-Newtonian Flow, Longman, London, 1977.

R.G. Larson, Constitutive Equations for Polymer Melts and Solutions, Butterworths, Boston, 1988. DOI: https://doi.org/10.1016/B978-0-409-90119-1.50012-9

Downloads

Published

2022-12-31

How to Cite

Murthy, C., P T, M., & T, L. (2022). PARTIAL SLIP EFFECT OF Cu,Au,TiO2-NANO PARTICLE IN STUDY BIO MAGNETIC MAXWELL FLUID FLOW AND HEAT TRANSFER OVER A STRETCHING SHEET IN THA PRESENCE OF MAGNETIC DIPOLE. ShodhKosh: Journal of Visual and Performing Arts, 3(2), 683–692. https://doi.org/10.29121/shodhkosh.v3.i2.2022.2608