HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON MANIFOLD DATA ANALYSIS AND SPARSE SUBSPACE PROJECTION

Authors

  • Zhijun Zheng School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
  • Yanbin Peng Zhejiang University of Science and Technology, School of Information and Electronic Engineering, Zhejiang Hangzhou, 310023

DOI:

https://doi.org/10.29121/ijetmr.v8.i9.2021.1040

Keywords:

Hyperspectral Image, Classification, Sparse Representation, Manifold Learning, Subspace Projection

Abstract

Aiming at the problem of "dimension disaster" in hyperspectral image classification, a method of dimension reduction based on manifold data analysis and sparse subspace projection (MDASSP) is proposed. The sparse coefficient matrix is established by the new method, and the sparse subspace projection is carried out by the optimization method. To keep the geometric structure of the manifold, the objective function is regularized by the manifold learning method. The new method combines sparse coding and manifold learning to generate features with better classification ability. The experimental results show that the new method is better than other methods in the case of small samples.

Downloads

Download data is not yet available.

References

Azadeh Kianisarkaleh, Hassan Ghassemian (2016). Spatial-spectral Locality Preserving Projection for Hyperspectral Image Classification with Limited Training Samples, International Journal of Remote Sensing, 37(21):5045-5059. Retrieved from https://doi.org/10.1080/01431161.2016.1226523 DOI: https://doi.org/10.1080/01431161.2016.1226523

Deng S , Xu Y , He Y (2015), A hyperspectral Image Classification Framework and Its Application, Information Sciences, 299(1):379-393. Retrieved from https://doi.org/10.1016/j.ins.2014.12.025 DOI: https://doi.org/10.1016/j.ins.2014.12.025

Dong S , Quan Y , Feng W (2021), A Pixel Cluster CNN and Spectral-Spatial Fusion Algorithm for Hyperspectral Image Classification With Small-Size Training Samples, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, PP(99):1-1. Retrieved from https://doi.org/10.1109/JSTARS.2021.3068864 DOI: https://doi.org/10.1109/JSTARS.2021.3068864

Dongyang Wu, Li M A (2018), Multi-manifold LE Algorithm for Dimension Reduction and Classification of Multitemporal Hyperspectral Image, Remote Sensing for Land & Resources, 30(2): 80-86.

Efron B, Hastie T, Johnstone I (2004), Least Angle Regression, Ann Statist, 32(2):407-499. Retrieved from https://doi.org/10.1214/009053604000000067 DOI: https://doi.org/10.1214/009053604000000067

Feng Z, Yang S, Wang M (2019), Learning Dual Geometric Low-Rank Structure for Semisupervised Hyperspectral Image Classification, IEEE Transactions on Cybernetics, 10(1):1-13.

Fuding Xie, Cunkuan Lei, Fangfei Li (2019), Unsupervised Hyperspectral Feature Selection based on Fuzzy c-means and Grey Wolf Optimizer, International Journal of Remote Sensing, 40(9):3344-3367.Retrieved from https://doi.org/10.1080/01431161.2018.1541366 DOI: https://doi.org/10.1080/01431161.2018.1541366

Gao L , Yu H , Zhang B (2016), Locality-preserving Sparse Representation-based Classification in Hyperspectral Imagery, Journal of Applied Remote Sensing, 10(4): 42-54. Retrieved from https://doi.org/10.1117/1.JRS.10.042004 DOI: https://doi.org/10.1117/1.JRS.10.042004

Hairong Wang, Turgay Celik (2018). Sparse Representation-based Hyperspectral Image Classification, Signal Image & Video Processing, 12(5):1009-1017. Retrieved from https://doi.org/10.1007/s11760-018-1249-1 DOI: https://doi.org/10.1007/s11760-018-1249-1

Jayaprakash C , Damodaran B B , Viswanathan S (2020), Randomized Independent Component Analysis and Linear Discriminant Analysis Dimensionality Reduction Methods for Hyperspectral Image Classification, Journal of Applied Remote Sensing, 14(3). Retrieved from https://doi.org/10.1117/1.JRS.14.036507 DOI: https://doi.org/10.1117/1.JRS.14.036507

Lv M , Zhao X , Liu L (2017), Discriminant Collaborative Neighborhood Preserving Embedding for Hyperspectral Imagery, Journal of Applied Remote Sensing, , 11(4):1-17. Retrieved from https://doi.org/10.1117/1.JRS.11.046004 DOI: https://doi.org/10.1117/1.JRS.11.046004

Qi Wang, Zhaotie Meng, Xuelong Li. (2017) Locality Adaptive Discriminant Analysis for Spectral-Spatial Classification of Hyperspectral Images, IEEE Geoscience & Remote Sensing Letters, 14(11):2077-2081. Retrieved from https://doi.org/10.1109/LGRS.2017.2751559 DOI: https://doi.org/10.1109/LGRS.2017.2751559

Qiao L , Chen S , Tan X (2010), Sparsity Preserving Projections with Applications to Face Recognition, Pattern Recognition, 43(1):331-341. Retrieved from https://doi.org/10.1016/j.patcog.2009.05.005 DOI: https://doi.org/10.1016/j.patcog.2009.05.005

Ren R, Bao W. (2019),Hyperspectral Image Classification Based on Belief Propagation with Multi-features and Small Sample Learning, Journal of the Indian Society of Remote Sensing, 47(5):1-10.Retrieved from https://doi.org/10.1007/s12524-018-00934-y DOI: https://doi.org/10.1007/s12524-018-00934-y

Tabejamaat M , Mousavi A (2017), Manifold Sparsity Preserving Projection for Face and Palmprint Recognition, Multimedia Tools and Applications, 77(16):1-26. Retrieved from https://doi.org/10.1007/s11042-017-4881-9 DOI: https://doi.org/10.1007/s11042-017-4881-9

Uddin, Md. Palash, Mamun, Md. Al, Hossain, Md. Ali. (2019), Effective Feature Extraction Through Segmentation-based Folded-PCA for Hyperspectral Image Classification, International Journal of Remote Sensing, 40(18): 7190-7220. Retrieved from https://doi.org/10.1080/01431161.2019.1601284 DOI: https://doi.org/10.1080/01431161.2019.1601284

Wan Li, Liangpei Zhang, Lefei Zhang (2017), GPU Parallel Implementation of Isometric Mapping for Hyperspectral Classification, IEEE Geoscience & Remote Sensing Letters, 14(9): 1532 - 1536. Retrieved from https://doi.org/10.1109/LGRS.2017.2720778 DOI: https://doi.org/10.1109/LGRS.2017.2720778

Wang A, Wang Y, Chen Y (2019). Hyperspectral Image Classification based on Convolutional Neural Network and Random Forest, Remote Sensing Letters, 10(11):1086-1094. Retrieved from https://doi.org/10.1080/2150704X.2019.1649736 DOI: https://doi.org/10.1080/2150704X.2019.1649736

Xiangpo Wei, Xuchu Yu, Bing Liu (2019), Convolutional Neural Networks and Local Binary Patterns for Hyperspectral Image Classification , European Journal of Remote Sensing, 52(1):448-462.Retrieved from https://doi.org/10.1080/22797254.2019.1634980 DOI: https://doi.org/10.1080/22797254.2019.1634980

Yc A, Hl A, Liang Y A (2021), Hyperspectral Image Classification With Discriminative Manifold Broad Learning System, Neurocomputing.

Yongguang Zhai, Lifu Zhang, Nan Wang (2016), A Modified Locality-Preserving Projection Approach for Hyperspectral Image Classification, IEEE Geoscience & Remote Sensing Letters, 13(8):1059-1063. Retrieved from https://doi.org/10.1109/LGRS.2016.2564993 DOI: https://doi.org/10.1109/LGRS.2016.2564993

Yuan Y, Wang C, Jiang Z (2021). Proxy-Based Deep Learning Framework for Spectral-Spatial Hyperspectral Image Classification: Efficient and Robust, IEEE Transactions on Geoscience and Remote Sensing, PP(99):1-15. Retrieved from https://doi.org/10.1109/TGRS.2021.3054008 DOI: https://doi.org/10.1109/TGRS.2021.3054008

Downloads

Published

2021-10-02

How to Cite

Zhijun, Z., & Yanbin, P. (2021). HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON MANIFOLD DATA ANALYSIS AND SPARSE SUBSPACE PROJECTION. International Journal of Engineering Technologies and Management Research, 8(9), 36–45. https://doi.org/10.29121/ijetmr.v8.i9.2021.1040