EX-SITU-EVALUATION OF NEW MATERIALS SUCH AS COPPER COMPOUNDS FOR ZINC-AIR BATTERY WITH THE AIM OF GETTING A SECONDARY ZINC-AIR BATTERY

Authors

  • Vinod-Kumar Banoth Eisenhuth GmbH Co. KG, Osterode, Germany
  • Martin Engelke Eisenhuth GmbH Co. KG, Osterode, Germany
  • David Fuchs Fakultaet Für Ingenieurwissenschaften, Lehrstuhl für Energietechnik, Duisburg, Germany
  • Thorsten Hickmann Eisenhuth GmbH Co. KG, Osterode, Germany
  • Falko Mahlendorf Fakultaet Für Ingenieurwissenschaften, Lehrstuhl für Energietechnik, Duisburg, Germany

DOI:

https://doi.org/10.29121/ijetmr.v11.i3.2024.1414

Keywords:

Zinc Air Battery, Material Anode, Electrical Resistance, Copper Compound

Abstract

Zinc airflow batteries are popular for large-scale energy storage due to their high-volume density, environmental safety, and economic feasibility of production and recycling. There is going to be a lot of research in order to realize a zinc-air battery as a secondary battery. One potential option in order to overcome this challenge is to use other anode materials, which are stable in the alkaline medium. The main objective of this work is to present the most influencing factors for the production of copper compounds with thermoplastic as binder and graphite as a secondary filler material. In addition, copper compounds are evaluated based on chemical and electrical tests.

Downloads

Download data is not yet available.

References

Curà, F., Sesana, R., Dugand, M., & Corsaro, L. (2023). Active Thermography Characterization of Aerogel Materials for Vehicle Electrification. Materials Science and Engineering, 1275, 12014. https://doi.org/10.1088/1757-899X/1275/1/012014

Dallaev, R., Pisarenko, T., Sobola, D., Orudzhev, F., Ramazanov, S., & Trčka, T. (2022). "Brief Review of PVDF Properties and Applications Potential. Polymers 14(22). https://doi.org/10.3390/polym14224793

Feldhaus, P., & Vahlenkamp, T. (2010). Transformation of Europe's Power System until 2050 Including Specific Considerations for Germany Electric Power and Natural Gas Practice.

Forero-Sandoval, I. Y., Cervantes-Alvarez, F., R.-R., J.A., Macias, J.D., Pech-May, N.W., Ordonez-Miranda, J., Alvarado-Gil, J.J. (2021). Percolation Threshold of the Thermal, Electrical and Optical Properties of Carbonyl-Iron Microcomposites. Applied Composite Materials, 447-463. https://doi.org/10.1007/s10443-021-09869-z

Hickmann, T., Adamek, T., Zielinski, O., & Derieth, T. (2021). Key Components in the Redox-Flow Battery: Bipolar Plates and Gaskets - Different Materials and Processing Methods for Their Usage', Energy Storage Battery Systems - Fundamentals and Applications. IntechOpen. https://doi.org/10.5772/intechopen.94863

Hosseini, S., Lao-atiman, W., Han, S.J., Arpornwichanop, A., Yonezawa, T., & Kheawhom, S. (2018). Discharge Performance of Zinc-Air Flow Batteries Under the Effects of Sodium Dodecyl Sulfate and Pluronic F-127. Sci Rep 8, 14909. https://doi.org/10.1038/s41598-018-32806-3

Howell, D. D., & Fukumoto, V. (2014). "Compression Molding of Long Chopped Fiber Thermoplastic Composites.," in Proceedings of the CAMX Conference Proceedings, Orlando, FL, USA.

Li, T., Song, Z., Yang, X., & Du, J. (2022). Influence of Processing Parameters on the Mechanical Properties of Peek Plates by Hot Compression Molding. Materials, 16, 36. https://doi.org/10.3390/ma16010036

Lu, C.-T., Zhu, Z.-Y., Chen, S.-W., Chang, Y.-L., & Hsueh, K.-L. (2022). Effects of Cell Design Parameters on Zinc-Air Battery Performance. Batteries, 92. https://doi.org/10.3390/batteries8080092

M. 24, (2023). Metallpulver 24, 2023.

Mahlendorf, A. H. F., & Jansen, C. (2009). Bipolar Plates. Elsevier B.V.

Mahlendorf, F., Fuchs, D., Müller, C., Heinzel, A., Heinemeyer, T., Schwarz, C., Schneider, A., & Behrens, P. (2018). Strategies for Improved Depth-of-Discharge of Zinc-Air Flow Batteries. No. MA2018-01 (2), 211. https://doi.org/10.1149/MA2018-01/2/211

Maria, U. L., Nadine, P., Henrike, S., Thorsten, H., & Peter, W. (2021). Investigation of Different Electrochemical Corrosion Treatments on Bipolar Plates for High and Low Temperature Polymer Electrolyte Membrane Fuel Cell Application. ECS Transactions, 8, 269. https://doi.org/10.1149/10408.0269ecst

Minke, C., Hickmann, T., Antonio, R. D. S., Kunz, U., & Turek, T. (2016). Cost and Performance Prospects for Composite Bipolar Plates in Fuel Cells and Redox Flow Batteries. Journal of Power Sources, 305, 182-190. https://doi.org/10.1016/j.jpowsour.2015.11.052

Naftaly, M., Das, S., Gallop, J., Pan, K., Alkhalil, F., Kariyapperuma, D., Constant, S., Ramsdale, C., & Hao, L. (2021). Sheet Resistance Measurements of Conductive Thin Films: A Comparison of Techniques. Electronics, 10, 960. https://doi.org/10.3390/electronics10080960

Pilinski, N., Schmies, H., Hickmann, T., & Wagner, P. (2021). Ex-situ Tests on Long Term Stability of Bipolar Plates for High Temperature PEM Fuel Cells. Low-Temp. Fuel Cells, Electrolysers & H2 Processing, EFCF 2021.

Planes, E., Flandin, L., & Alberola, N. (2012). Polymer Composites Bipolar Plates for PEMFCs. Energy Procedia, 20, 311-323. https://doi.org/10.1016/j.egypro.2012.03.031

Ramin, K., Soraya, H., Abhishek, L., Rezaei, M. S., Thanh, N. M., Tetsu, Y., & Soorathep, K. (2020). Enhanced Cycling Performance of Rechargeable. International Journal of Molecular Sciences, no. Scientific Reports, 8(1), 14909. https://doi.org/10.1038/s41598-018-32806-3

Rzatki, F.D., Barboza, D.V.D., Schroeder, R.M., Barra, G. M. D. O., Binder, C., Klein, A. N., & Mello, J. D. B. D. (2015). Effect of Temperature and Atmosphere on the Tribological Behavior of a Polyether Ether Ketone Composite. Friction 3, 259–265. https://doi.org/10.1007/s40544-015-0091-5

Taherian, R. (2016). Experimental and Analytical Model for the Electrical Conductivity of Polymer-Based Nanocomposite. Composites Science and Technology, 17-31. https://doi.org/10.1016/j.compscitech.2015.11.029

Tariq, M., Utkarsh, Syed, N.A., Behravesh, A.H., Pop-Iliev, R., & Rizvi, G. (2023). Optimization of Filler Compositions of Electrically Conductive Polypropylene Composites for the Manufacturing of Bipolar Plates. Polymers, 15(14), 3076. https://doi.org/10.3390/polym15143076

Ye, P. M., Zois, H., Apekis, L., & Lebedev, E. (2004). Influence of Pressure on the Electrical Conductivity of Metal Powders used as Fillers in Polymer Composites. Powder Technology, 140, 49-55. https://doi.org/10.1016/j.powtec.2003.11.010

Yuxi, S., Caizhi, Z., Chun-Yu, L., Ming, H., Rui-Yuan, Y., Deen, S., & Jinrui, C. (2020). Review on Current Research of Materials, Fabrication and Application for Bipolar Plate in Proton Exchange Membrane Fuel Cell. International Journal of Hydrogen Energy, 45, 29832-29847. https://doi.org/10.1016/j.ijhydene.2019.07.231

Downloads

Published

2024-03-14

How to Cite

Banoth, V.-K., Engelke, M., Fuchs, D., Hickmann, T., & Mahlendorf, F. (2024). EX-SITU-EVALUATION OF NEW MATERIALS SUCH AS COPPER COMPOUNDS FOR ZINC-AIR BATTERY WITH THE AIM OF GETTING A SECONDARY ZINC-AIR BATTERY. International Journal of Engineering Technologies and Management Research, 11(3), 1–13. https://doi.org/10.29121/ijetmr.v11.i3.2024.1414

Most read articles by the same author(s)