NEW TYPE OF GLUEING OF REDOX FLOW STACKS

Authors

  • Thorsten Hickmann Eisenhuth GMBH & Co. KG, Friedrich-Ebert-Str. 203, 37520, Osterode Am Harz, Germany
  • Prassad Venkatesan Eisenhuth GMBH & Co. KG, Friedrich-Ebert-Str. 203, 37520, Osterode Am Harz, Germany
  • Martin Engelke Eisenhuth GMBH & Co. KG, Friedrich-Ebert-Str. 203, 37520, Osterode Am Harz, Germany
  • Nyunt Wai Energy Research Institute, Nanyang Technical University, 637141, Singapore
  • Falko Mahlendorf Department Energy Technology, University Duisburg-Essen, 47057, Duisburg, Germany
  • Aleksej Jasincuk Department Energy Technology, University Duisburg-Essen, 47057, Duisburg, Germany
  • Ravendra Gundlapalli VFlowTech Pte Ltd, 8 Cleantech Loop #06-62, 637145, Singapore
  • Arjun Bhattarai VFlowTech Pte Ltd, 8 Cleantech Loop #06-62, 637145, Singapore
  • Ravi Ranjan VFlowTech Pte Ltd, 8 Cleantech Loop #06-62, 637145, Singapore
  • Purna C. Ghimire VFlowTech Pte Ltd, 8 Cleantech Loop #06-62, 637145, Singapore

DOI:

https://doi.org/10.29121/ijetmr.v9.i9.2022.1221

Keywords:

Redox Flow, Stack, Glueing, Energy Conversion, Cost Reduction

Abstract

For the energy transition to succeed, the growing amount of solar and wind power need to be stored for night-time or low-wind periods. Redox flow storage offers a good way of balancing out the fluctuations in renewable energies and is considered a promising energy storage system because it is potentially inexpensive and relatively easy to scale. However, the costs are still too high for this technology to be a resounding success. New manufacturing and joining technologies can help here. This will be demonstrated using the central element of the redox flow battery, the stack, as an example. Here, novel bonding ideas will be investigated and explained. The aim was to improve the contact between the gas diffusion fleece on the active side of the bipolar half plates and the current collector on the bipolar edge plates. A media and temperature-resistant adhesive was tested and tried out in different geometries.

Downloads

Download data is not yet available.

References

Hamilton, P.J., and Pollet, B.G. (2010). Polymer Electrolyte Membrane Fuel Cell (PEMFC) Flow Field Plate : Design, Materials and Characterisation. Fuel Cells, 10(4),489-509. https://doi.org/10.1002/fuce.201000033.

Heinzel, A., Mahlendorf, F., Niemzig, O., Kreuz, C. (2004). Injection Moulded Low Cost Bipolar Plates for Pem Fuel Cells. Journal of Power Sources, 131(1-2), 35-40. https://doi.org/10.1016/j.jpowsour.2004.01.014.

Kreuz, C. (2008). PEM fuel Cells with Injection-Moulded Bipolar Plates Made of Highly Filled Graphite Compound. Dissertation, University of Duisburg-Essen.

Ponce de Leon, C., Frias-Ferrer, A., Gonzalez-Garcia, J., Szanto, D. A., Walsh, F. C. (2006). Redox Flow Cells for Energy Conversion. Journal of Power Sources, 160(1), 716-732. https://doi.org/10.1016/j.jpowsour.2006.02.095.

Qian, P., Zhang, H., Chen, J., Wen, Y., Luo, Q., Liu, Z., You, D., Yi, B. (2008). A Novel Electrode-Bipolar Plate Assembly for Vanadium Redox-Flow Battery Applications. Journal of Power Sources, 175(1), 613-620. https://doi.org/10.1016/j.jpowsour.2007.09.006.

Radforda, G.J.W., Coxa, J., Wills, R.G.A., Walshb, F.C. (2008). Electrochemical Characterization of Activated Carbon Particles Used in Redox Flow Battery Electrodes. Journal of Power Sources. 185(2), 1499-1504. https://doi.org/10.1016/j.jpowsour.2008.08.020.

Saleh, M. M. (1999). Mathematical Modelling of Gas Evolving Flow-Through Porous Electrodes. Electrochimica Acta, 45(6), 959-967. https://doi.org/10.1016/S0013-4686(99)00296-0.

Shah, A. A., Al-Fetlawi, H., Walsh, F. C. (2010). Dynamic Modelling Of Hydrogen Evolution Effects in the All-Vanadium Redox Flow Battery. Electrochimica Acta, 55(3), 1125-1139. https://doi.org/10.1016/j.electacta.2009.10.022.

Skyllas-Kazacos, M. (2010). History of the Development of the Vanadium Redox-Flow Cell. University of New South Wales.

Sun, B., and Skyllas-Kazacos, M. (1992). Chemical Modification of Graphite Materials for Vanadium Redox Flow Battery Application - Part Ii. Acid Treatment. Electrochimica Acta, 37(13), 2459-2465. https://doi.org/10.1016/0013-4686(92)87084-D.

Trainham, J. A., and Newman, J. (1981). A Comparison Between Flow-Through and Flow-By Porous Electrodes for Redox Energy Storage. Electrochimica Acta, 26(4), 455-469. https://doi.org/10.1016/0013-4686(81)87024-7.

Wang, W. H., and Wang, X. D. (2007). Investigation of Ir-Modified Carbon Felt as Positive Electrode of an all Vanadium Redox Flow Battery. Electrochimica Acta, 52(24), 6755-6762. https://doi.org/10.1016/j.electacta.2007.04.121.

Zhong, S., and kyllas-Kazacos, M. (1992). Electrochemical Behaviour of Vanadium (V)/vanadium (IV) Redox Couple at Graphite Electrodes. Journal of Power Sources, 39(1), 1-9. https://doi.org/10.1016/0378-7753(92)85001-Q.

Downloads

Published

2022-09-15

How to Cite

Hickmann, T., Venkatesan, P. ., Engelke, M., Wai, N., Mahlendorf, F., Jasincuk, A., Gundlapalli, R., Bhattarai, A., Ranjan, R., & Ghimire, P. C. (2022). NEW TYPE OF GLUEING OF REDOX FLOW STACKS. International Journal of Engineering Technologies and Management Research, 9(9), 47–52. https://doi.org/10.29121/ijetmr.v9.i9.2022.1221