SOME PHYSICAL CHARACTERISTICS OF A FIVE-DIMENSIONAL MASS SCALAR ELECTROMAGNETIC COSMOLOGICAL MODEL

Authors

  • R. N. Patra P.G. Department of Mathematics, Berhampur University, Odisha, India

DOI:

https://doi.org/10.29121/ijetmr.v10.i4.2023.1327

Keywords:

Magnetic Field, Zero Mass Scalar Field, Cosmic Parameter, Singularity, Gravitational Field

Abstract

In this paper we are interested to study some important physical aspects of a five dimensional space time which is attained by the interaction of magnetic field and zero mass scalar field in Einstein’s theory of gravitation, where the cosmic parameters X & A are functions of cosmic time t .The concluding remark is focused on the singularity nullity, uniformity, energy condition and about the possession of gravitational field radiation of the space-time.

Downloads

Download data is not yet available.

References

Al-Haysah, A. M., & Hasmani, A.H. (2021). Higher Dimensional Bianchi Type-I String Cosmological Model in f(R) Theory of Gravity, Heliyon, 7(9). https://doi.org/10.1016/j.heliyon.2021.e08063.

Alvarez, E., & Gavela, M.B. (1983). Entropy from Extra Dimensions, Phys. Rev. Lett. (51)931-934. https://doi.org/10.1103/PhysRevLett.51.931.

Appelquist, T., Chodos, A., & Freund, P.G.O. (1987). Modern Kaluza Klein Theories. Addison Wesley, MA.

Appelquist, T., & Chodos, A. (1983). Phys. Rev. Lett., 50, 141. https://doi.org/10.1103/PhysRevLett.50.141.

Ayyangar, B.R.N., & Mohanty, G. (1985). Interacting Massless Scalar and Source-Free Electromagnetic Fields. Acta Phys. Polon. B 16, 13-20.

Banerjee, S., & Bhuli, B. (1990). Homogeneous Cosmological Model in Higher Dimension. Monthly Notices of Royal Astronomical Society, 247(1), 57-61.

Barkha, R. T., Atul, T., & Swati, B. P. (2017). Bianchi Type-I Inhomogeneous String Cosmological Model with Electromagnetic Field in General Relativity. Prespacetime Journal, 8(4), 474-483.

Bloch, I. M., Budker, D., Flambaum, V. V., Samsonov, I. B., Sushkov, A. O, & Tretiak, O. (2023). Scalar Dark Matter Induced Oscillation of a Permanent-Magnet Field. Physical Review D 107. https://doi.org/10.1103/PhysRevD.107.075033.

Bonnor, W. (1958). Gravitational Radiation. Nature, (181), 1196-1197. https://doi.org/10.1038/1811196a0.

Chatarjee, S. (1987). De Sitter-Type of Cosmological Model in à Five-Dimensional Theory of Gravity with Variable Rest Mass. Astronomy and Astrophysics 179(1-2), 1-2.

Chodos, A., & Detweiler, S. (1980). Where has the Fifth Dimension Gone ?. Phys. Rev. D, 21, 2167-2169. https://doi.org/10.1103/PhysRevD.21.2167.

Das, A., & Banerjee, A. (1999). Five Dimensional Magnetic Universe. Astrophysics and Space Science 268, 425-431. https://doi.org/10.1023/A:1002026921986.

Delice, Ö., Kirezli, P. & Çiftci, D.K. (2013). Higher Dimensional Cylindrical or Kasner Type Electrovacuum Solutions. Gen Relativ Gravit 45, 2251–2272. https://doi.org/10.1007/s10714-013-1583-0.

Freund, P.G.O. (1982). "Kulza Lein Cosmologies" Nucl. Phys. B, 209, 146. https://doi.org/10.1016/0550-3213(82)90106-7.

Guth, A. (1981). Inflationary Universe : A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D, (23),347-356. https://doi.org/10.1103/PhysRevD.23.347.

Ingunn, K. W., & Ravndal, F. (2004). Dynamics of the Scalar Field in Five-Dimentional Kaluza-Klein Theor. International Journal of Modern Physics A.19(27),4671-4685. https://doi.org/10.48550/arXiv.hep-ph/0210292.

Kaluza, T. (1921). ZumUnitätsproblem in der Physik. Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.), 966-972. https://doi.org/10.1142/S0218271818700017.

Kashyap, J. N. S. (1978). Coupled Electromagnetic and Scalar Fields in a Cylindrically Symmetric Space-Time. Acta Physica, 45(4), 309-315. https://doi.org/10.1007/BF03158158.

Krongos, D. S., & Torre, C. G. (2015). Geometrization Conditions for Perfect Fluids, Scalar Fields, and Electromagnetic Fields, Utah State University, Journal of Mathematical Physics, (56). http://dx.doi.org/10.1063/1.4926952.

Krori, K.D., Chaudhury, T., Mahanta, C.R., & Mazumdar, A. (1990). Some Exact Solutions in String Cosmology. Gen RelatGravit (22), 123-130. https://doi.org/10.1007/BF00756203.

Klein, O. (1926). The Atomicity of Electricity as a Quantum Theory Law. Nature (118), 516. https://doi.org/10.1038/118516a0.

Mohanty, G., Sahoo, R.R. & Mahanta, K.L. (2007). Five Dimensional LRS Bianchi Type-I String Cosmological Model in Saez and Ballester Theory. Astrophys Space Sci 312, 321-324. https://doi.org/10.1007/s10509-007-9697-z.

Patel, L. K., & Singh, G. P. (2002). Higher-Dimensional Solution for a Relativistic Star. Gravitation and Cosmology, (7), 52-54.

Pradhan, A., Khadekar, G. S., & Srivastava, D. (2006). Higher Dimensional Cosmological Implications of a Decay Law For ? Term ; Expressions for Some Observable quantities. Astrophys. Space Sci., (305) 415-421. https://doi.org/10.48550/arXiv.gr-qc/0506112.

Pranjalendu, R., & Rajshekhar, R. B. (2022). Anisotropic Cloud String Cosmological Model with Five-Dimensional Kaluza-Klein Space-Time. Frontiers in Astronomy and Space Sciences, (9), 1-7. https://doi.org/10.3389/fspas.2022.869020.

Rahaman, F., Chakraborty, S., & Bera, J. (2002a). Inhomogeneous Cosmological Model in Lyra Geometry. Int. J. Mod. Phys. D, 11, 1501-1504. https://doi.org/10.1142/S0218271802001937.

Randjbar-Daemi, S., Salaus, A., & Strathdee, J. (1984). A Salaus and J Strathdee., Phys. Lett. B (135) 388. https://doi.org/10.1016/0370-2693(84)90300-9.

Reddy, D.R.K., & Ramesh, G. (2019). Five-Dimensional Anisotropic Dark Energy Cosmological Model in the Presence of Scalar-Meson Fields in General Relativity. International Journal of Cosmology, Astronomy and Astrophysics. 1(2), 67-70. https://doi.org/10.18689/ijcaa-1000116.

Singh, G. P., Deshpande, R.V., & Singh, T. (2004). Higher - Dimensional Cosmological Model with Variable Gravitational Constant and Bulk Viscosity in Lyra Geometry. Pramana-J. Phys., 63, 937-945. https://doi.org/10.1007/BF02704332.

Weinberg, S. (1986). Physics in Higher Dimension, World Scientific. https://doi.org/10.1142/0317.

Óraifeartaigh, L., & Synge, J. L. (1958). A Property of Empty Space-Time. Proc. R. Soc. Lond. A246299–300. http://doi.org/10.1098/rspa.1958.0138.

Downloads

Published

2023-08-24

How to Cite

Patra, R. N. (2023). SOME PHYSICAL CHARACTERISTICS OF A FIVE-DIMENSIONAL MASS SCALAR ELECTROMAGNETIC COSMOLOGICAL MODEL. International Journal of Engineering Technologies and Management Research, 10(4), 54–63. https://doi.org/10.29121/ijetmr.v10.i4.2023.1327