INHOMOGENEOUS COSMOLOGICAL PERFECT FLUID MODELS IN MODIFIED THEORY OF GENERAL RELATIVITY WITH TIME DEPENDENT-TERM

Authors

  • R. N. Patra P.G. Department of Mathematics, Berhampur University, Odisha, India

DOI:

https://doi.org/10.29121/ijetmr.v10.i3.2023.1314

Keywords:

Inhomogeneous Cosmological Model, Perfect Fluid, Radiating Cosmological Model, Zeldevich Model

Abstract

The cosmological term is achieved with non-static inhomogeneous cosmological models when a perfect fluid generates the gravitational field's source. Einstein's field equations are solved for three physically significant examples (the vacuum cosmological model, the radiating cosmological model, and the Zeldevich model) using the gamma law equation of state.

Downloads

Download data is not yet available.

References

Barber, G. A. (1982). On Two “Self-Creation” Cosmologies. Gen Relat Gravit 14, 117–136. https://doi.org/10.1007/BF0075691.

Barrow, J. D. (1988). Nucl. Phys., B. 310, 743.

Carvalho, J. C. (1996). Unified Description of the Early Universe. Int J Theor Phys 35, 019–2028. https://doi.org/10.1007/BF02302426.

Gron, O. (1990). Viscous Inflationary Universe Models. Astrophys Space Sci 173, 191– 225. https://doi.org/10.1007/BF00643930.

Kolb, E. W., & Turner, M.S. (1990). The Early Universe, Additson – Wesley, U.S.A.

Mohanty, G., Mishra, B., Das, R. (2000). Bull. Inst. Math. Academia Sinica, 28,43.

Mohanty, G., Panigrahi, U. & Sahu, R. (2002). Exact Bianchi Type-I Cosmological Micro-Model in Modified Theory of General Relativity. Astrophysics and Space Science, 281, 633–640. https://doi.org/10.1023/A:1015858621340.

Mohanty, G., Sahu, R. & Panigrahi, U. (2003). Micro and Macro Cosmological Model in Barber's Second Self-Creation Theory. Astrophysics and Space Science 284, 1055–1062. https://doi.org/10.1023/A:1023306103130.

Murphy, G.L. (1973). Phys. Rev., D 8. https://doi.org/10.1103/PhysRevD.8.4231.

Myung, S., & Cho, B.M. (1986). Mod. Phys. Lett., A 1, 37.

Panigrahi, U., & Sahu, R. (2004). Plane Symmetric Cosmological Macro Models in Self-creation Theory of Gravitation. Czechoslovak Journal of Physics 54, 543–551 https://doi.org/10.1023/B:CJOP.0000024957.99564.97.

Panigrahi, U.K., & Sahu R. C. (2002). Science Letters, Allahabad, India, 25, 11, 12.

Panigrahi, U.K., & Sahu, R.C. (2003). Bull. Cal. Math. Soc. India, 95, 3, 183.

Panigrahi, U.K., & Sahu, R.C. (2003). Theo. And Appl. Mech., 30, 163.

Pimentel, L. O. (1985). Exact Self-Creation Cosmological Solutions. Astrophys Space Sci, 116, 395–399. https://doi.org/10.1007/BF00653794.

Reddy, D.R.K., & Venkateswarlu, R. (1989). Astrophysc. Space Sci., 155, 135.

Sahu, R.C., Mohapatra, L.K., & Mohanty G. (2010). Romanian Reports in Physics, 62(2), 249-262.

Sahu, R.C, & Panigrahi, U. K. (2006). Astrophys Space Sci., 306, 179.

Sahu, R.C, & Panigrahi, U. K. (2003). Astrophys. Space Sci., 288, 601.

Shanthi, K., & Rao, V. U. M. (1991). Bianchi Type-II and III Models in Self-Creation Cosmology. Astrophys Space Sci 179, 147–153. https://doi.org/10.1007/BF00642359.

Shri Ram & Singh, C. P. (1998). Astrophys. Space Sci., 257, 123.

Soleng, H. H. (1987b). Astrophys. Space Sci., 102, 67.

Srivastav, S.K, & Sinha, K. P. (1998). Aspects of Gravitational Interactions, Horizons in World Physics, Noya Science Publishers Inc., Commack, New York, 225, 111.

Turok, N. (1988). Phys. Rev. Lett., 60, 549.

Venkateswarlu, R., & Reddy, D. R. K. (1990). Bianchi Type-I Models in Self-Creation Theory of Gravitation. Astrophys Space Sci, 168, 193–199. https://doi.org/10.1007/BF00636864.

Weinberg, S. (1971). Astronomical Physics Journal, 168, 175.

Weinberg, S. (1972). Gravitation and Cosmology, Wiley and Sons.

Downloads

Published

2023-08-24

How to Cite

Patra, R. N. (2023). INHOMOGENEOUS COSMOLOGICAL PERFECT FLUID MODELS IN MODIFIED THEORY OF GENERAL RELATIVITY WITH TIME DEPENDENT-TERM. International Journal of Engineering Technologies and Management Research, 10(3), 49–58. https://doi.org/10.29121/ijetmr.v10.i3.2023.1314