FOLK ART FESTIVALS AND AI-DRIVEN VISITOR ANALYTICS

Authors

  • Ms. Vyshnavi A Assistant Professor, Department of Management Studies, JAIN (Deemed-to-be University), Bengaluru, Karnataka, India
  • Mohan Garg Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, Solan, 174103, India
  • Gopal Goyal Professor, Department of Architecture, Vivekananda Global University, Jaipur, India
  • Mukesh Parashar Professor, School of Business Management, Noida International University 203201, India
  • Tarun Kapoor Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140417, Punjab, India
  • Dr.Anil Bhanudas Pawar Librarian Art's Science and Commerce College Kolhar Tal- Rahata District- Ahmednagar, Maharashtra, India
  • Amol Bhilare Department of Computer Engineering Vishwakarma Institute of Technology, Pune, Maharashtra, 411037 India

DOI:

https://doi.org/10.29121/shodhkosh.v6.i3s.2025.6789

Keywords:

Folk Art Festivals, Visitor Analytics, Artificial Intelligence, Cultural Heritage Management, Machine Learning

Abstract [English]

Folk art festivals are crucial in maintaining cultural heritage, identifying the community, and intergenerational knowledge transfer. Nonetheless, visitor behavior in such culturally saturated settings is difficult to comprehend because of shifting patterns of crowds, differing groups of participants, and different forms of involvement. The latest developments in the field of artificial intelligence (AI) provide a strong toolkit to filter and process extensive data on visitor attendance to make decisions helpful in preserving culture and managing the event in real-time. This paper examines the application of AI-based visitor analytics, namely machine learning, computer vision, and natural language processing to the planning and assessment of folk art festivals. Through mixed-methods research methodology, the paper evaluates the capabilities of AI methods to analyze visitor traffic, forecast congestion, interpret sentiment using textual and verbal responses, and divide the audience into groups by their behavioral patterns. The case studies of the chosen folk art festivals illustrate that the AI-based analytics can offer much greater operational efficiency, visitor experience, and insights, compared to the traditional manual way of observing. The results point to the idea that real-time crowd tracking is a feature that promotes security and resource distribution, the sentiment analysis performs a detailed assessment of visitor perceptions, and behavioral modeling influences specific cultural programming.

References

Canavire, V. B. (2023). Inteligencia Artificial, Cultura y Educación: Una Plataforma Latinoamericana de Podcast Para Resguardar el Patrimonio Cultural. TSAFIQUI: Revista Científica en Ciencias Sociales, 13, 59–71. https://doi.org/10.29019/tsafiqui.v13i21.1195 DOI: https://doi.org/10.29019/tsafiqui.v13i21.1195

Cheng, L. (2023). Research on Development and Protection of Cultural Heritage Tourism Resources in the Age of Artificial Intelligence. Applied Mathematics and Nonlinear Sciences, 9, 1–15. https://doi.org/10.2478/amns.2023.2.01554 DOI: https://doi.org/10.2478/amns.2023.2.01554

Dong, R., and Xia, W. (2024). Digital Narrative and Tourism Value Symbiosis of Zhejiang East Tang Poetry Road: A Cross-Cultural Perspective. Journal of Language, Culture, and Education Studies, 1, 17–22. https://doi.org/10.61784/jlces3011 DOI: https://doi.org/10.61784/jlces3011

Foroughi, M., Wang, T., and Roders, P. (2025). In Praise of Diversity in Participatory Heritage Planning Empowered by Artificial Intelligence: Windcatchers in Yazd. Urban Planning, 10, Article 8724. https://doi.org/10.17645/up.8724 DOI: https://doi.org/10.17645/up.8724

García-Velázquez, L. M. (2023). Inteligencia Artificial y Patrimonio Cultural: Una Aproximación Desde Las Humanidades Digitales. DICERE, 149–160. https://doi.org/10.35830/dc.vi4.55 DOI: https://doi.org/10.35830/dc.vi4.55

González, S. C., Bande, B., Losada, F., and Pérez, A. N. (2024). La Investigación Cualitativa: El uso de la Minería de Textos en Redes Sociales. Dykinson.

Harisanty, D., Obille, K. L. B., Anna, N., Purwanti, E., and Retrialisca, F. (2024). Cultural Heritage Preservation in the Digital Age, Harnessing Artificial Intelligence for the Future: A Bibliometric Analysis. Digital Library Perspectives, 40, 609–630. https://doi.org/10.1108/DLP-01-2024-0018 DOI: https://doi.org/10.1108/DLP-01-2024-0018

Ibarra-Vázquez, A., Soto-Karass, J. G., and Ibarra-Michel, J. P. (2024). Realidad Aumentada Para La Mejora de la Experiencia Del Turismo Cultural. Revista Ra Ximhai, 20, 107–124. https://doi.org/10.35197/rx.20.02.2024.05.ai DOI: https://doi.org/10.35197/rx.20.02.2024.05.ai

Kotsiubivska, K., Tymoshenko, O., and Vasylevsky, A. (2024). Artificial Intelligence Tools for Preservation and Popularization of Cultural Heritage. Digital Platforms and Information Technologies in the Sociocultural Sphere, 7, 275–282. https://doi.org/10.31866/2617-796X.7.2.2024.317736 DOI: https://doi.org/10.31866/2617-796X.7.2.2024.317736

Li, D., Du, P., and He, H. (2022). Artificial Intelligence-Based Sustainable Development of Smart Heritage Tourism. Wireless Communications and Mobile Computing, Article 5441170. https://doi.org/10.1155/2022/5441170 DOI: https://doi.org/10.1155/2022/5441170

Li, J. (2021). Application of Artificial Intelligence in Cultural Heritage Protection. Journal of Physics: Conference Series, 1881(3), Article 032007. https://doi.org/10.1088/1742-6596/1881/3/032007 DOI: https://doi.org/10.1088/1742-6596/1881/3/032007

Mitric, J., Radulovic, I., Popović, T., Šćekić, Z., and Tinaj, S. (2024). AI and Computer Vision in Cultural Heritage Preservation. In Proceedings of the 28th International Conference on Information Technology (IT) (xx–xx). IEEE. https://doi.org/10.1109/IT61232.2024.10475738 DOI: https://doi.org/10.1109/IT61232.2024.10475738

Münster, S., Maiwald, F., Di Lenardo, I., Henriksson, J., Isaac, A., Graf, M. M., Beck, C., and Oomen, J. (2024). Artificial Intelligence for Digital Heritage Innovation: Setting up a RandD Agenda for Europe. Heritage, 7, 794–816. https://doi.org/10.3390/heritage7020038 DOI: https://doi.org/10.3390/heritage7020038

Pisoni, G., Díaz-Rodríguez, N., Gijlers, H., and Tonolli, L. (2021). Human-Centered Artificial Intelligence for Designing Accessible Cultural Heritage. Applied Sciences, 11(2), Article 870. https://doi.org/10.3390/app11020870 DOI: https://doi.org/10.3390/app11020870

Torres-Peñalva, A., and Moreno-Izquierdo, L. (2025). La Inteligencia Artificial Como Motor de Innovación en el Turismo: Startups, Capital Riesgo y Transformación Digital. ICE Revista de Economía, 938, 25–37. https://doi.org/10.32796/ice.2025.938.7886 DOI: https://doi.org/10.32796/ice.2025.938.7886

Zhang, B., Cheng, P., Deng, L., Romainoor, N., Han, J., Luo, G., and Gao, T. (2023). Can AI-Generated Art Stimulate the Sustainability of Intangible Cultural Heritage? A Quantitative Research on Cultural and Creative Products of New Year Prints Generated by AI. Heliyon, 9, Article e20477. https://doi.org/10.1016/j.heliyon.2023.e20477 DOI: https://doi.org/10.1016/j.heliyon.2023.e20477

Downloads

Published

2025-12-20

How to Cite

Vyshnavi A, Garg, M., Goyal, G., Parashar, M., Kapoor, T., Pawar, A. B., & Bhilare, A. (2025). FOLK ART FESTIVALS AND AI-DRIVEN VISITOR ANALYTICS. ShodhKosh: Journal of Visual and Performing Arts, 6(3s), 325–335. https://doi.org/10.29121/shodhkosh.v6.i3s.2025.6789