DEEP LEARNING IN LITHOGRAPHIC PROCESS OPTIMIZATION

Authors

  • Dr. Naresh Kaushik Assistant Professor, uGDX School of Technogy, ATLAS SkillTech University, Mumbai, Maharashtra, India
  • Sovers Singh Bisht Assistant Professor, Department of Computer Science & Engineering(DS), Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
  • Dr.Zafar Ali Khan N Professor, Computer Science and Engineering, Presidency University, Bangalore, Karnataka, India
  • Simran Kalra Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140417, Punjab, India
  • Gourav Sood Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, Solan, 174103, India
  • Rupa Fadnavis Department of Computer Science & Engineering, Yeshwantrao Chavan College of Engineering Nagpur, Maharashtra, India

DOI:

https://doi.org/10.29121/shodhkosh.v6.i1s.2025.6633

Keywords:

Lithography, Deep Learning, Process Optimization, Reinforcement Learning, Physics-Informed Neural Networks, Semiconductor Manufacturing

Abstract [English]

The rapid advances in the development of semiconductor devices have placed control, precision and yield optimisation in the printing process under pressures hitherto unseen. In the past few levels of technology, empirical and physics-based models worked well. But in advanced lithography, they have a hard time capturing the complicated non-linear relationships of exposure, focus, resist and etching parameters. New developments in deep learning (DL) have opened up the use of predictive modelling, finding flaws and adaptable optimisation in the printing process in new ways. This research explores how deep learning models such as convolutional neural network (CNN), recurrent neural network (RNN), generative adversarial network (GAN) and transformer can be applied to enhance the lithography process. Data from litho tools and physics-based simulation are used to train models that can be used to predict regularity of critical dimensions (CD), mistakes in overlays, and the accuracy of resist profiles. Model generalisation is enhanced with dimensionality reduction techniques and feature extraction techniques. Mean absolute error (MAE), R2, and process window gain are performance measures and are helpful in evaluation. The study also speaks about new areas of research that require more attention.

References

Aibara, I., Matsumoto, H., Yasuda, J., Yasui, K.-i., Motosugi, T., Kimura, H., Kawaguchi, M., Kojima, Y., Saito, M., and Nakayamada, N. (2024). Recent Progress of Multi-Beam Mask Writer MBM-3000. In Proceedings of SPIE (Vol. 13273). https://doi.org/10.1117/12.3028706 DOI: https://doi.org/10.1117/12.3028706

Chen, Y., Deng, H., Sha, X., Chen, W., Wang, R., Chen, Y.-H., Wu, D., Chu, J., Kivshar, Y. S. S., Xiao, S., et al. (2023). Observation of Intrinsic Chiral Bound States in the Continuum. Nature, 613, 474–478. https://doi.org/10.1038/s41586-022-05467-6 DOI: https://doi.org/10.1038/s41586-022-05467-6

Guan, F. X., Guo, X. D., Zeng, K. B., Zhang, S., Nie, Z. Y., Ma, S. J., Dai, Q., Pendry, J., Zhang, X., and Zhang, S. (2023). Overcoming Losses in Superlenses with Synthetic Waves of Complex Frequency. Science, 381, 766–771. https://doi.org/10.1126/science.adi1267 DOI: https://doi.org/10.1126/science.adi1267

Guan, F. X., Guo, X. D., Zhang, S., Zeng, K. B., Hu, Y., Wu, C. C., Zhou, S. B., Xiang, Y. J., Yang, X. X., Dai, Q., et al. (2024). Compensating Losses in Polariton Propagation with Synthesized Complex Frequency Excitation. Nature Materials, 23, 506–511. https://doi.org/10.1038/s41563-023-01787-8 DOI: https://doi.org/10.1038/s41563-023-01787-8

Helke, C., Canpolat-Schmidt, C. H., Heldt, G., Schermer, S., Hartmann, S., Voigt, A., and Reuter, D. (2023). Intra-Level Mix and Match Lithography with Electron Beam Lithography and I-Line Stepper Combined with Resolution Enhancement for Structures Below the CD-Limit. Micro and Nano Engineering, 19, Article 100189. https://doi.org/10.1016/j.mne.2023.100189 DOI: https://doi.org/10.1016/j.mne.2023.100189

Kang, C. N., Seo, D., Boriskina, S. V., and Chung, H. J. (2024). Adjoint Method in Machine Learning: A Pathway to Efficient Inverse Design of Photonic Devices. Materials and Design, 239, Article 112737. https://doi.org/10.1016/j.matdes.2024.112737 DOI: https://doi.org/10.1016/j.matdes.2024.112737

Kang, C., Park, C., Lee, M., Kang, J., Jang, M. S., and Chung, H. (2024). Large-Scale Photonic Inverse Design: Computational Challenges and Breakthroughs. Nanophotonics, 13, 3765–3792. https://doi.org/10.1515/nanoph-2024-0127 DOI: https://doi.org/10.1515/nanoph-2024-0127

Mulla, R. A., Pawar, M. E., Bhange, A., Goyal, K. K., Prusty, S., Ajani, S. N., and Bashir, A. K. (2024). Optimizing Content Delivery in ICN-Based VANET using Machine Learning Techniques. In WSN and IoT: An Integrated Approach for Smart Applications (pp. 165–186). https://doi.org/10.1201/9781003437079-7 DOI: https://doi.org/10.1201/9781003437079-7

Ou, T. W., Ho, W. K., Lai, T. S., Lu, J. L., Chen, A. C., Egl, A., Kühmayer, M., and Brenner, F. (2024). New Applications on Multi-Beam Mask Writers to Enable Mask-Making in 3nm and Beyond. In Proceedings of SPIE (Vol. 13216). https://doi.org/10.1117/12.3034678 DOI: https://doi.org/10.1117/12.3034678

Padghan, N. P., Sapekar, K. N., Sonakneur, M. S. S., Masram, N. M., Lolure, S. R., and Madavi, S. C. (2025, May). Muscle Sensor Driven 3D Printed Prosthetic arm. International Journal of Technical and Research Applications in Mechanical Engineering (IJTARME), 14(1), 5–11.

Shutsko, I., Buchmuller, M., Meudt, M., and Gorrn, P. (2022). Light-Controlled Fabrication of Disordered Hyperuniform Metasurfaces. Advanced Materials Technologies, 7, Article 2200086. https://doi.org/10.1002/admt.202200086 DOI: https://doi.org/10.1002/admt.202200086

Wang, H., Pan, C.-F., Li, C., Menghrajani, K. S., Schmidt, M. A., Li, A., Fan, F., Zhou, Y., Zhang, W., Wang, H., et al. (2024). Two-Photon Polymerization Lithography for Imaging Optics. International Journal of Extreme Manufacturing, 6, Article 042002. https://doi.org/10.1088/2631-7990/ad35fe DOI: https://doi.org/10.1088/2631-7990/ad35fe

Wu, X. F., Li, Z. C., Zhao, Y., Yang, C. S., Zhao, W., and Zhao, X. P. (2022). Abnormal Optical Response of PAMAM Dendrimer-Based Silver Nanocomposite Metamaterials. Photonics Research, 10, 965–972. https://doi.org/10.1364/PRJ.447131 DOI: https://doi.org/10.1364/PRJ.447131

Zhao, J., Chen, H., Song, K., Xiang, L. Q., Zhao, Q., Shang, C. H., Wang, X. N., Shen, Z. J., Wu, X. F., Hu, Y. J., et al. (2022). Ultralow Loss Visible Light Metamaterials Assembled by Metaclusters. Nanophotonics, 11, 2953–2966. https://doi.org/10.1515/nanoph-2022-0171 DOI: https://doi.org/10.1515/nanoph-2022-0171

Zhao, J., Wu, X. F., Cao, D., Zhou, M. C., Shen, Z. J., and Zhao, X. P. (2023). Broadband Omnidirectional Visible Spectral Metamaterials. Photonics Research, 11, 1284–1293. https://doi.org/10.1364/PRJ.482542 DOI: https://doi.org/10.1364/PRJ.482542

Zhao, J., Wu, X. F., Zhang, D. D., Xu, X. T., Wang, X. N., and Zhao, X. P. (2024). Amber Rainbow Ribbon Effect in Broadband Optical Metamaterials. Nature Communications, 15, Article 2613. https://doi.org/10.1038/s41467-024-46914-4 DOI: https://doi.org/10.1038/s41467-024-46914-4

Zhao, X., Huang, R., Du, X., Zhang, Z., and Li, G. (2024). Ultrahigh-Q Metasurface Transparency Band Induced by Collective-Collective Coupling. Nano Letters, 24, 1238–1245. https://doi.org/10.1021/acs.nanolett.3c04174 DOI: https://doi.org/10.1021/acs.nanolett.3c04174

Downloads

Published

2025-12-10

How to Cite

Kaushik, N., Bisht, S. S., Khan N, Z. A., Kalra, S., Sood, G., & Fadnavis, R. (2025). DEEP LEARNING IN LITHOGRAPHIC PROCESS OPTIMIZATION. ShodhKosh: Journal of Visual and Performing Arts, 6(1s), 63–73. https://doi.org/10.29121/shodhkosh.v6.i1s.2025.6633