HALL AND ION SLIP EFFECTS ON THE MHD CONVECTIVE FLOW FOR MIXED CONVECTION BOUNDARY LAYER FLOW OF A NANOFLUID ALONG AN INCLINED PLATE EMBEDDED IN A POROUS MEDIUM
DOI:
https://doi.org/10.29121/shodhkosh.v4.i2.2023.6377Keywords:
Hall Effect, Nano Fluid, Porous Medium, Mhd, Mixed ConvectionAbstract [English]
In the present investigation, the radiative MHD flow of an incom- pressible viscous electrically conducting non-Newtonian nanofluidover an exponentially accelerated vertical porous surface has been considered. Under the influence of slip velocity in a rotating frame, it takes Hall and ion slip impacts into account. Water and ethylene glycol mixture is considered a base Casson fluid. A steady uniform magnetic field is applied under the postulation of a low magnetic Reynolds number. The ramped temperature and time-altering concentration at the surface are considered. First-order consistent chemical reaction and heat absorption are also regarded. Silver and Titania nanoparticles are disseminated in base fluid water and ethylene glycol combination should be formed by a hybrid nanofluid. The Laplace transformation technique is employed on the non-dimensional governing equations to ensure closed-form ana- lytical solutions. The graphical representations scrutinize the effects of physical parameters on the significant flow characteristics. The temperature of Ag-TiO2/WEG nanofluid is relatively superior to that of Casson Ag-WEG nanofluid. Species concentra- tion of Casson hybrid Ag-TiO2/WEG nanofluid decreases with an increase in Schmidt number and chemical reaction parameters. The heat absorption increases the Nusselt number near the surface, while Ag and TiO2 nanoparticle volume fractions tend to lessen it.
References
D.M. Yu, J.L. Routbort, S. Choi, Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer Eng. 29 (2008) 432460. DOI: https://doi.org/10.1080/01457630701850851
S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: D.A. Siginer, H.P. Wang (Eds.), in: Developments and Applications of NonNewtonian Flows, FED-Vol. 231, MD-Vol. 66, ASME, 1995, pp. 99105.
H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles, Netsu Bussei (Japan) 7 (4) (1993) 227233. DOI: https://doi.org/10.2963/jjtp.7.227
J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transfer 128 (2006) 240250. DOI: https://doi.org/10.1115/1.2150834
S.K. Das, S. Choi, W. Yu, T. Pradeep, Nanofluids: Science and Technology, Wiley Interscience, New Jersey, 2007. DOI: https://doi.org/10.1002/9780470180693
J. Eastman, S.U.S. Choi, S. Lib, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene-glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett. 78 (6) (2001) 718720. DOI: https://doi.org/10.1063/1.1341218
J. Buongiorno, W. Hu, Nanofluid coolants for advanced nuclear power plants, in: paper no. 5705, Proc. ICAPP 05, Seoul, May 1519, 2005.
A.V. Kuznetsov, D.A. Nield, Natural convection boundary-layer of a nanofluid past a vertical plate, Int. J. Therm. Sci. 49 (2010) 243247. DOI: https://doi.org/10.1016/j.ijthermalsci.2009.07.015
D.A. Nield, A.V. Kuznetsov, The Cheng-Minkowycz problem for natural convection boundary-layer flow in a porous medium saturated by a nanofluid, Int. J. Heat Mass Transfer 52 (2009) 57925795. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.024
P. Cheng, W.J. Minkowycz, Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike, J. Geophys. Res. 82 (1977) 20402044. DOI: https://doi.org/10.1029/JB082i014p02040
W.A. Khan, I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Transfer 53 (2010) 24772483 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
Sundar LS, Sharma KV, Singh MK, et al. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor a review. Renew Sustain Energy Rev. 2017;68:185198. doi:10.1016/j.rser.2016.09.108. DOI: https://doi.org/10.1016/j.rser.2016.09.108
Sarkar J, Ghosh P, Adil A. A review on hybrid nanofluids: recent research, development and applications. Renew Sustain Energy Rev. 2015;43:164177. doi:10.1016/j.rser.2014.11.023. DOI: https://doi.org/10.1016/j.rser.2014.11.023
Devi SPA, Devi SSU. Numerical investigation of hydromagnetic hybrid Cu-Al2O3/water nanofluid flow over a permeable stretching sheet with suction. Int J Nonlin Sci Num Simul. 2016;17:249257. doi:10.1515/ijnsns-2016-0037. DOI: https://doi.org/10.1515/ijnsns-2016-0037
Minea AA. Challenges in hybrid nanofluids behavior in turbulent flow: recent research and numerical comparison. Renew Sustain Energy Rev. 2017;71:426434. DOI: https://doi.org/10.1016/j.rser.2016.12.072
Toghraie D, Vahid AC, Masoud A. Measurement of thermal conductivity of ZnOTiO2/EG hybrid nanofluid. J Thermal Anal Cal. 2016;125:527535. DOI: https://doi.org/10.1007/s10973-016-5436-4
Hayat T, Nadeem S. Heat transfer enhancement with AgCuO/water hybrid nanofluid. Results Phys 2017;7:23172324. DOI: https://doi.org/10.1016/j.rinp.2017.06.034
Jamshed W, Aziz A. A comparative entropy based analysis of Cu and Fe3O4/methanol Powell-Eyering nanofluid in solar thermal collectors subjected to thermal radiation, vari- able thermal conductivity and impact of different nanoparticles shape. Results Phys. 2018;9: 195205. DOI: https://doi.org/10.1016/j.rinp.2018.01.063
Ellahi R. Special issue on recent developments of nanofluids. Appl Sci. 2018;8:192. DOI: https://doi.org/10.3390/app8020192
Aman S, Zokri SM, Ismail Z, et al. Effect of MHD and porosity on exact solutions and flow of a hybrid Casson-nanofluid. J Adv Res Fluid Mech Therm Sci. 2018;44:131139.
Usman M, Hamid M, Zubair T, et al. Cu-Al2O3/water hybrid nanofluid through a permeable sur- face in the presence of nonlinear radiation and variable thermal conductivity via LSM. Int J Heat Mass Transf. 2018;126:13471356. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.005
Abo-Eldahab E, Barakat E, Nowar K. Hall currents and heat transfer effects on peristaltic transport in a vertical asymmetric channel through a porous medium. Math Prob Eng. 2012;2012:840203. doi:10.1155/2012/840203. DOI: https://doi.org/10.1155/2012/840203
Koumy SRE, Barakat ESI, Abdelsalam SI. Hall and porous boundaries effects on peristaltic trans- port through porous medium of a Maxwell model. Transp Porous Media. 2012;94:643658. DOI: https://doi.org/10.1007/s11242-012-0016-y
Motsa SS, Shateyi S. The effects of chemical reaction, Hall and ion-slip currents on MHD micropo- lar fluid flow with thermal diffusivity using a novel numerical technique. J Appl Math. 2012: 130. doi:10.1155/2012/689015. DOI: https://doi.org/10.1155/2012/689015
Asghar S, Hussain Q, Hayat T, et al. Hall and ion slip effects on peristaltic flow and heat transfer analysis with Ohmic heating. Appl Math Mech. 2014;35:15091524. DOI: https://doi.org/10.1007/s10483-014-1881-6
Krishna MV, Chamkha AJ. Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium. Results Phys. 2019;15:102652. doi:10.1016/j.rinp.2019.102652. DOI: https://doi.org/10.1016/j.rinp.2019.102652
Krishna MV, Swarnalathamma BV, Chamkha AJ, et al. Joule and Hall effects on MHD rotating mixed convective flow past an infinite vertical porous plate. J Ocean Eng Sci. 2019;4(3):263275. doi:10.1016/j.joes.2019.05.002. DOI: https://doi.org/10.1016/j.joes.2019.05.002
Krishna MV, Chamkha AJ. Hall and ion slip effects on unsteady MHD convective rotating flow of nanofluids application in biomedical engineering. J Egyptian Math Soc. 2020;28(1):114. doi:10.1186/s42787-019-0065-2. DOI: https://doi.org/10.1186/s42787-019-0065-2
Krishna MV. Heat transport on steady MHD flow of copper and alumina nanofluids past a stretching porous surface. Heat Transfer. 2020;49:13741385. doi:10.1002/htj.21667. DOI: https://doi.org/10.1002/htj.21667
Krishna MV, Ahamad NA, Chamkha AJ. Hall and ion slip effects on unsteady MHD free convec- tive rotating flow through a saturated porous medium over an exponential accelerated plate. Alexandria Eng J. 2020;59:565577. doi:10.1016/j.aej.2020.01.043. DOI: https://doi.org/10.1016/j.aej.2020.01.043
Krishna MV, Sravanthi CS, Gorla RSR. Hall and ion slip effects on MHD rotating flow of ciliary propulsion of microscopic organism through porous media. Int Commun Heat Mass Transfer. 2020;112:104500. doi:10.1016/j.icheatmasstransfer.2020.104500. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2020.104500
Krishna MV, Chamkha AJ. Hall and ion slip effects on MHD rotating flow of elastico- viscous fluid through porous medium. Int Commun Heat Mass Transfer. 2020;113:104494. doi:10.1016/j.icheatmasstransfer.2020.104494. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2020.104494
Krishna MV. Hall and ion slip effects on MHD free convective rotating flow bounded by the semi- infinite vertical porous surface. Heat Transfer. 2020;49:19201938. doi:10.1002/htj.21700. DOI: https://doi.org/10.1002/htj.21700
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 N. Srinivasa Rao

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.