AI & NLP IN BANKING MARKETING: ENGAGEMENT, PERSONALIZATION, AND COMPLIANCE

Authors

  • Dr. Suwarna Vinay Shidore Assistant Professor, Indsearch Institute of Management Studies and Research , Pune
  • Dr. Aparna Tembulkar Director, Indsearch Institute of Management Studies& Research, Pune
  • Dr. Rupali Surendra Gupte Assistant Professor, Indsearch Institute of Management Studies and Research, Pune

DOI:

https://doi.org/10.29121/shodhkosh.v5.i6.2024.6228

Keywords:

Artificial Intelligence, Natural Language Processing, Banking Marketing, Customer Engagement, Customer Trust, Data Privacy

Abstract [English]

Artificial Intelligence (AI) and Natural Language Processing (NLP) have become essential technologies in the banking sector, reshaping marketing strategies, enhancing customer engagement, and refining compliance frameworks. This investigation examined the impact of AI-driven personalization and NLP-enhanced customer interactions on engagement and trust in banking services. A structured questionnaire was administered to 150 participants from various demographic backgrounds, concentrating on customer experiences with AI-powered chatbots, recommendation systems, and compliance-related communications in the banking industry. The results indicated that AI and NLP techniques notably improved personalization, bolstered customer trust via compliance-focused communication, and elevated overall engagement. Nonetheless, apprehensions surrounding data privacy and the clarity of regulations remained evident. This study investigates the impact of AI and NLP on banking marketing, emphasizing their ability to enhance customer satisfaction while also addressing ethical considerations.

References

Araci, D. (2019). FinBERT: Financial sentiment analysis with pre-trained language models. arXiv preprint arXiv:1908.10063. https://doi.org/10.48550/arXiv.1908.10063

Ameen, N., Tarhini, A., Reppel, A., & Anand, A. (2020). Customer experiences in the age of artificial intelligence. Computers in Human Behavior, 114, 106548. https://doi.org/10.1016/j.chb.2020.106548 DOI: https://doi.org/10.1016/j.chb.2020.106548

Article 29 Data Protection Working Party. (2018). Guidelines on automated individual decision-making and profiling for the purposes of Regulation 2016/679 (wp251rev.01). European Commission. https://ec.europa.eu/newsroom/article29/items/612053/en

Bank of England & Financial Conduct Authority. (2021). Artificial Intelligence Public-Private Forum: Minutes (1 October 2021). https://www.bankofengland.co.uk/minutes/2021/october/aippf-minutes-1-october-2021

Brandtzaeg, P. B., & Følstad, A. (2017). Why people use chatbots. In I. Kompatsiaris et al. (Eds.), Internet Science. INSCI 2017. Lecture Notes in Computer Science (Vol. 10673). Springer. https://doi.org/10.1007/978-3-319-70284-1_30 DOI: https://doi.org/10.1007/978-3-319-70284-1_30

Brodie, R. J., Hollebeek, L. D., Jurić, B., & Ilić, A. (2011). Customer engagement: Conceptual domain, fundamental propositions, and implications for research. Journal of Service Research, 14(3), 252–271. https://doi.org/10.1177/1094670511411703 DOI: https://doi.org/10.1177/1094670511411703

Cheng, Y., & Jiang, H. (2021). Customer–brand relationship in the era of artificial intelligence: Understanding the role of chatbot marketing efforts. Journal of Product & Brand Management, 31(2), 252–264. https://doi.org/10.1108/jpbm-05-2020-2907 DOI: https://doi.org/10.1108/JPBM-05-2020-2907

General Data Protection Regulation (GDPR). (2016). Regulation (EU) 2016/679. Article 22—Automated individual decision-making, including profiling. https://gdpr-info.eu/art-22-gdpr/

Hollebeek, L. D. (2010). Demystifying customer brand engagement: Exploring the loyalty nexus. Journal of Marketing Management, 27(7–8), 785–807. https://doi.org/10.1080/0267257X.2010.500132 DOI: https://doi.org/10.1080/0267257X.2010.500132

Keisidou, E., Sarigiannidis, L., Maditinos, D. I., & Thalassinos, E. (2013). Customer satisfaction, loyalty and financial performance: A holistic approach of the Greek banking sector. International Journal of Bank Marketing, 31(4), 259–288. https://doi.org/10.1108/ijbm-11-2012-0114 DOI: https://doi.org/10.1108/IJBM-11-2012-0114

Loughran, T., & McDonald, B. (2011). When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks. Journal of Finance, 66(1), 35–65. https://doi.org/10.1111/j.1540-6261.2010.01625.x DOI: https://doi.org/10.1111/j.1540-6261.2010.01625.x

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems (NeurIPS). https://doi.org/10.48550/arXiv.1705.07874

Malo, P., Sinha, A., Takala, P., Korhonen, P., & Wallenius, J. (2014). Financial PhraseBank: Sentiment analysis for financial news (Dataset documentation). Kaggle. https://www.kaggle.com/datasets/ankurzing/sentiment-analysis-for-financial-news

Mehrotra, A. (2019). Artificial intelligence in financial services – Need to blend automation with human touch. 2019 International Conference on Automation, Computational and Technology Management (ICACTM), 342–347. https://doi.org/10.1109/icactm.2019.8776741 DOI: https://doi.org/10.1109/ICACTM.2019.8776741

Moliner-Tena, M. Á., Monferrer-Tirado, D., & Estrada-Guillén, M. (2019). Customer engagement, non-transactional behaviors and experience in services. International Journal of Bank Marketing, 37(3), 730–754. https://doi.org/10.1108/ijbm-04-2018-0107 DOI: https://doi.org/10.1108/IJBM-04-2018-0107

OECD. (2021). Artificial intelligence, machine learning and big data in finance. https://www.oecd.org/en/publications/artificial-intelligence-machine-learning-and-big-data-in-finance_98e761e7-en.html DOI: https://doi.org/10.1787/98e761e7-en

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should I trust you?” Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1135–1144). https://doi.org/10.1145/2939672.2939774 DOI: https://doi.org/10.1145/2939672.2939778

Ricci, F., Rokach, L., & Shapira, B. (Eds.). (2011). Recommender systems handbook. Springer. https://link.springer.com/book/10.1007/978-0-387-85820-3 DOI: https://doi.org/10.1007/978-0-387-85820-3

Szalavetz, A. (2019). Artificial intelligence-based development strategy in dependent market economies – Any room amidst big power rivalry? Central European Business Review, 8(4), 40–54. https://doi.org/10.18267/j.cebr.219 DOI: https://doi.org/10.18267/j.cebr.219

van Esterik-Plasmeijer, P. W. J., & van Raaij, W. F. (2017). Banking system trust, bank trust, and bank loyalty. International Journal of Bank Marketing, 35(1), 97–111. https://doi.org/10.1108/ijbm-12-2015-0195 DOI: https://doi.org/10.1108/IJBM-12-2015-0195

Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). Attention is all you need. Advances in Neural Information Processing Systems (NeurIPS). https://doi.org/10.48550/arXiv.1706.03762

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540 DOI: https://doi.org/10.2307/30036540

Verma, S., Sharma, R., Deb, S., & Maitra, D. (2021). Artificial intelligence in marketing: Systematic review and future research direction. International Journal of Information Management Data Insights, 1(1), 100002. https://doi.org/10.1016/j.jjimei.2020.100002 DOI: https://doi.org/10.1016/j.jjimei.2020.100002

Downloads

Published

2024-06-30

How to Cite

Shidore, S. V., Tembulkar, A., & Gupte, R. S. (2024). AI & NLP IN BANKING MARKETING: ENGAGEMENT, PERSONALIZATION, AND COMPLIANCE. ShodhKosh: Journal of Visual and Performing Arts, 5(6), 3224–3239. https://doi.org/10.29121/shodhkosh.v5.i6.2024.6228