CIRCULAR ECONOMY IN ACTION: HIGH-PURITY NANOPARTICLES VIA WASTE VALORIZATION

Authors

  • Dr. K. Sravanthi Assistant Professor of Chemistry, G.D.C. Women, Siddipet, India
  • Dr. Ch. Madhusudan Assistant Professor of Physics, G.D.C. Siddipet (Autonomous), India

DOI:

https://doi.org/10.29121/shodhkosh.v5.i7.2024.5945

Keywords:

Sustainability, Nanotechnology, Iron Oxide Nanoparticles (Ionps), Agricultural Waste, Green Chemistry, Circular Economy, Environmental Remediation, Waste Valorization

Abstract [English]

This research successfully presents a sustainable and eco-friendly method for synthesizing iron oxide nanoparticles (IONPs) using agricultural waste as a resource. The innovative approach utilizes the biochemical properties of agricultural by-products to achieve the production of high-purity, uniformly sized nanoparticles, which are poised to have vast implications across a multitude of applications. This study addresses the growing demand for green chemistry practices, showcasing how nanotechnology can align with environmental sustainability goals. The method outlined demonstrates the dual benefit of waste valorization and advanced material synthesis, turning agricultural residues into valuable raw materials for nanoscience. The resultant nanoparticles exhibit superior characteristics, such as consistent particle size distribution and high purity, making them suitable for use in areas like medicine, energy storage, catalysis, and environmental remediation. This study emphasizes the pressing need to adopt sustainable practices in technological advancements, with a focus on minimizing the environmental footprint of scientific processes. The use of agricultural waste not only promotes the reduction of waste accumulation but also aligns with circular economy principles by repurposing otherwise discarded materials. The findings also underline the importance of integrating renewable resources in nanotechnology innovations. Future directions for this research include further optimization of the synthesis process to maximize nanoparticle yield while maintaining quality. Advanced characterization techniques will be employed to refine the properties of the synthesized IONPs. Additionally, future investigations will expand on the exploration of practical applications, assessing the efficacy and performance of the nanoparticles in real-world scenarios such as targeted drug delivery, water purification, and advanced battery technologies. This study serves as a beacon for interdisciplinary collaboration, bridging the domains of green chemistry, material science, and environmental engineering. The insights gained extend beyond the immediate scope of iron oxide nanoparticles, offering a framework that can be replicated for other nanomaterials. This holistic approach to sustainable development highlights the potential for nanotechnology to provide innovative solutions to some of the most pressing environmental challenges of our time. By demonstrating the feasibility of using agricultural waste in high-tech applications, this research not only contributes to the growing body of knowledge in green nanotechnology but also inspires a shift toward more sustainable scientific methodologies. The integration of eco-friendly practices with cutting-edge technology has the potential to redefine the future of nanoscience, ensuring a more sustainable and environmentally conscious pathway forward.

References

Abid, M. A., Abid, D. A., Aziz, W. J., & Rashid, T. M. (2021). Iron oxide nanoparticles synthesized using garlic and onion peel extracts rapidly degrade methylene blue dye. Physica B Condensed Matter, 622, 413277. https://doi.org/10.1016/j.physb.2021.413277 DOI: https://doi.org/10.1016/j.physb.2021.413277

Abdullah, J. a. A., Díaz-García, Á., Law, J. Y., Romero, A., Franco, V., & Guerrero, A. (2023). Sustainable Nanomagnetism: Investigating the influence of green synthesis and pH on iron oxide nanoparticles for enhanced biomedical applications. Polymers, 15(18), 3850. https://doi.org/10.3390/polym15183850 DOI: https://doi.org/10.3390/polym15183850

Abu-Serie, M. M., & Abdelfattah, E. Z. A. (2022). Anti-metastatic breast cancer potential of novel nanocomplexes of diethyldithiocarbamate and green chemically synthesized iron oxide nanoparticles. International Journal of Pharmaceutics, 627, 122208. https://doi.org/10.1016/j.ijpharm.2022.122208 DOI: https://doi.org/10.1016/j.ijpharm.2022.122208

Aida, Alonizan, N., Zarrad, B., & Hjiri, M. (2023). Green synthesis of iron oxide nanoparticles using Hibiscus plant extract. Journal of Taibah University for Science, 17(1). https://doi.org/10.1080/16583655.2023.2221827 DOI: https://doi.org/10.1080/16583655.2023.2221827

Alamu, G. A., Ayanlola, P. S., Babalola, K. K., Adedokun, O., Sanusi, Y. K., & Fajinmi, G. R. (2024). Green synthesis and characterizations of magnetic iron oxide nanoparticles using Moringa oleifera extract for improved performance in dye-sensitized solar cell. Chemical Physics Impact, 8, 100542. https://doi.org/10.1016/j.chphi.2024.100542 DOI: https://doi.org/10.1016/j.chphi.2024.100542

Alexeree, S. M. I., Abou-Seri, H. M., El-Din, H. E. S., Youssef, D., & Ramadan, M. A. (2024). Green synthesis of silver and iron oxide nanoparticles mediated photothermal effects on Blastocystis hominis. Lasers in Medical Science, 39(1). https://doi.org/10.1007/s10103-024-03984-6 DOI: https://doi.org/10.1007/s10103-024-03984-6

Al-Karagoly, H., Rhyaf, A., Naji, H., Albukhaty, S., AlMalki, F. A., Alyamani, A. A., Albaqami, J., & Aloufi, S. (2022). Green synthesis, characterization, cytotoxicity, and antimicrobial activity of iron oxide nanoparticles usingNigella sativaseed extract. Green Processing and Synthesis, 11(1), 254–265. https://doi.org/10.1515/gps-2022-0026 DOI: https://doi.org/10.1515/gps-2022-0026

Awais, S., Munir, H., Najeeb, J., Anjum, F., Naseem, K., Kausar, N., Shahid, M., Irfan, M., & Najeeb, N. (2023). Green synthesis of iron oxide nanoparticles using Bombax malabaricum for antioxidant, antimicrobial and photocatalytic applications. Journal of Cleaner Production, 406, 136916. https://doi.org/10.1016/j.jclepro.2023.136916 DOI: https://doi.org/10.1016/j.jclepro.2023.136916

Dowlath, M. J. H., Musthafa, S. A., Khalith, S. M., Varjani, S., Karuppannan, S. K., Ramanujam, G. M., Arunachalam, A. M., Arunachalam, K. D., Chandrasekaran, M., Chang, S. W., Chung, W. J., & Ravindran, B. (2021). Comparison of characteristics and biocompatibility of green synthesized iron oxide nanoparticles with chemical synthesized nanoparticles. Environmental Research, 201, 111585. https://doi.org/10.1016/j.envres.2021.111585 DOI: https://doi.org/10.1016/j.envres.2021.111585

Guo, S., Jiang, M., Lin, J., Khan, N. I., Owens, G., & Chen, Z. (2022). Arsenic speciation, oxidation and immobilization in an unsaturated soil in the presence of green synthesized iron oxide nanoparticles and humic acid. Chemosphere, 311, 137198. https://doi.org/10.1016/j.chemosphere.2022.137198 DOI: https://doi.org/10.1016/j.chemosphere.2022.137198

Isik, Z., Bouchareb, R., Arslan, H., Özdemir, S., Gonca, S., Dizge, N., Balakrishnan, D., & Prasad, S. V. S. (2022). Green synthesis of iron oxide nanoparticles derived from water and methanol extract of Centaurea solstitialis leaves and tested for antimicrobial activity and dye decolorization capability. Environmental Research, 219, 115072. https://doi.org/10.1016/j.envres.2022.115072 DOI: https://doi.org/10.1016/j.envres.2022.115072

Kaleem, M., Minhas, L. A., Hashmi, M. Z., Farooqi, H. M. U., Waqar, R., Kamal, K., Aljaluod, R. S., Alarjani, K. M., & Mumtaz, A. S. (2023). Biogenic synthesis of iron oxide nanoparticles and experimental modeling studies on the removal of heavy metals from wastewater. Journal of Saudi Chemical Society, 28(1), 101777. https://doi.org/10.1016/j.jscs.2023.101777 DOI: https://doi.org/10.1016/j.jscs.2023.101777

Khadka, D., Gautam, P., Dahal, R., Ashie, M. D., Paudyal, H., Ghimire, K. N., Pant, B., Poudel, B. R., Bastakoti, B. P., & Pokhrel, M. R. (2024). Evaluating the photocatalytic activity of green synthesized iron oxide nanoparticles. Catalysts, 14(11), 751. https://doi.org/10.3390/catal14110751 DOI: https://doi.org/10.3390/catal14110751

Kharey, P., Goel, M., Husain, Z., Gupta, R., Sharma, D., M, M., Palani, I., & Gupta, S. (2022). Green synthesis of biocompatible superparamagnetic iron oxide-gold composite nanoparticles for magnetic resonance imaging, hyperthermia and photothermal therapeutic applications. Materials Chemistry and Physics, 293, 126859. https://doi.org/10.1016/j.matchemphys.2022.126859 DOI: https://doi.org/10.1016/j.matchemphys.2022.126859

Kiwumulo, H. F., Muwonge, H., Ibingira, C., Lubwama, M., Kirabira, J. B., & Ssekitoleko, R. T. (2022). Green synthesis and characterization of iron-oxide nanoparticles using Moringa oleifera: a potential protocol for use in low and middle income countries. BMC Research Notes, 15(1). https://doi.org/10.1186/s13104-022-06039-7 DOI: https://doi.org/10.1186/s13104-022-06039-7

Muzafar, W., Kanwal, T., Rehman, K., Perveen, S., Jabri, T., Qamar, F., Faizi, S., & Shah, M. R. (2022). Green synthesis of iron oxide nanoparticles using Melia azedarach flowers extract and evaluation of their antimicrobial and antioxidant activities. Journal of Molecular Structure, 1269, 133824. https://doi.org/10.1016/j.molstruc.2022.133824 DOI: https://doi.org/10.1016/j.molstruc.2022.133824

Ndou, N., Rakgotho, T., Nkuna, M., Doumbia, I. Z., Mulaudzi, T., & Ajayi, R. F. (2023). Green Synthesis of Iron Oxide (Hematite) Nanoparticles and Their Influence on Sorghum bicolor Growth under Drought Stress. Plants, 12(7), 1425. https://doi.org/10.3390/plants12071425 DOI: https://doi.org/10.3390/plants12071425

Panneerselvam, C., Alshehri, M. A., Saif, A., Faridi, U., Khasim, S., Mohammedsaleh, Z. M., Parveen, H., Omer, N., Alasmari, A., Mukhtar, S., & Al-Aoh, H. A. (2024). Green synthesis of Abutilon indicum (L) derived iron oxide (FeO) nanoparticles with excellent biological, anticancer and photocatalytic activities. Polyhedron, 257, 117022. https://doi.org/10.1016/j.poly.2024.117022 DOI: https://doi.org/10.1016/j.poly.2024.117022

Priya, N., Naveen, N., Kaur, K., & Sidhu, A. K. (2021). Green Synthesis: an eco-friendly route for the synthesis of iron oxide nanoparticles. Frontiers in Nanotechnology, 3. https://doi.org/10.3389/fnano.2021.655062 DOI: https://doi.org/10.3389/fnano.2021.655062

Saleem, S., & Khan, M. S. (2022). Phyto-interactive impact of green synthesized iron oxide nanoparticles and Rhizobium pusense on morpho-physiological and yield components of greengram. Plant Physiology and Biochemistry, 194, 146–160. https://doi.org/10.1016/j.plaphy.2022.11.013 DOI: https://doi.org/10.1016/j.plaphy.2022.11.013

Selvaraj, R., Pai, S., Vinayagam, R., Varadavenkatesan, T., Kumar, P. S., Duc, P. A., & Rangasamy, G. (2022). A recent update on green synthesized iron and iron oxide nanoparticles for environmental applications. Chemosphere, 308, 136331. https://doi.org/10.1016/j.chemosphere.2022.136331 DOI: https://doi.org/10.1016/j.chemosphere.2022.136331

Soltys, L., Olkhovyy, O., Tatarchuk, T., & Naushad, M. (2021). Green synthesis of metal and metal oxide nanoparticles: Principles of green chemistry and raw materials. Magnetochemistry, 7(11), 145. https://doi.org/10.3390/magnetochemistry7110145 DOI: https://doi.org/10.3390/magnetochemistry7110145

Yassin, M. T., Al-Otibi, F. O., & Al–Askar, A. A. (2024). Green synthesis, characterization and antimicrobial activity of iron oxide nanoparticles with tigecycline against multidrug resistant bacterial strains. Journal of King Saud University - Science, 36(4), 103131. https://doi.org/10.1016/j.jksus.2024.103131 DOI: https://doi.org/10.1016/j.jksus.2024.103131

Yassin, M. T., Al-Otibi, F. O., Al-Askar, A. A., & Alharbi, R. I. (2023). Green synthesis, characterization, and antifungal efficiency of biogenic iron oxide nanoparticles. Applied Sciences, 13(17), 9942. https://doi.org/10.3390/app13179942 DOI: https://doi.org/10.3390/app13179942

Zafar, S., Farooq, A., Batool, S., Tariq, T., Hasan, M., & Mustafa, G. (2024). Green synthesis of iron oxide nanoparticles for mitigation of chromium stress and anti-oxidative potential in Triticum aestivum. Hybrid Advances, 5, 100156. https://doi.org/10.1016/j.hybadv.2024.100156 DOI: https://doi.org/10.1016/j.hybadv.2024.100156

Zúñiga-Miranda, J., Guerra, J., Mueller, A., Mayorga-Ramos, A., Carrera-Pacheco, S. E., Barba-Ostria, C., Heredia-Moya, J., & Guamán, L. P. (2023). Iron oxide nanoparticles: green synthesis and their antimicrobial activity. Nanomaterials, 13(22), 2919. https://doi.org/10.3390/nano13222919 DOI: https://doi.org/10.3390/nano13222919

Downloads

Published

2024-07-31

How to Cite

K. Sravanthi, & Ch. Madhusudan. (2024). CIRCULAR ECONOMY IN ACTION: HIGH-PURITY NANOPARTICLES VIA WASTE VALORIZATION. ShodhKosh: Journal of Visual and Performing Arts, 5(7), 1501–1508. https://doi.org/10.29121/shodhkosh.v5.i7.2024.5945