MELTING HEAT TRANSFER IN MAGNETOHYDRODYNAMIC SLIP NANOFLUID FLOW OVER STRETCHING SHEET WITH OUTER VELOCITY

Authors

  • Seema Research Scholar, MVN University, Palwal, Haryana, India
  • Kuldeep Tanwar Associate Professor MVN University, Palwal, Haryana, India
  • Vikas Poply Assistant Professor Department of Applied Mathematics, KLP College, Rewari, India
  • Rakesh Kumar Associate Professor, Department of Chemistry, Govt. P. G. Nehru College Jhajjar, Haryana

DOI:

https://doi.org/10.29121/shodhkosh.v5.i6.2024.5628

Keywords:

Melting Heat Transfer, Nanofluid, Slip Velocity, Outer Velocity, Mhd, Stretching Sheet

Abstract [English]

Melting heat transmission characteristics of magnetohydrodynamic (MHD) nanofluid flow over a stretching sheet, considering the effects of velocity slip and an external flow (outer velocity) has been examined. Similarity transitions converted the basic partial differential equations of nanofluid into a set of nonlinear ordinary differential equations. The Runge–Kutta–Fehlberg method is employed in conjunction with a shooting technique to numerically solve these equations. The analysis demonstrates that a narrower thermal boundary layer is because of an increase in the melting parameter. The fluid velocities decrease as the velocity slip and magnetic parameter increases. The velocity distributions are considerably influenced by the presence of an outer velocity, which in turn increases the convective heat transfer rates. Concentration decreases with an increase in Lewis number. These discoveries have practical implications for industrial processes that involve MHD nanofluids, including polymer extrusion, materials processing, and cooling systems, where precision heat transfer control is a critical parameter. This research will be essential for the development of heat sinks and cooling devices of varying morphologies, which will enhance the heat transmission capabilities of nanofluids and thereby expand their engineering potential.

References

L. J. Crane, “Flow past a stretching plate,” Z. Für Angew. Math. Phys. ZAMP, vol. 21, no. 4, pp. 645–647, Jul. 1970, doi: 10.1007/BF01587695. DOI: https://doi.org/10.1007/BF01587695

P. S. Gupta and A. S. Gupta, “Heat and mass transfer on a stretching sheet with suction or blowing,” Can. J. Chem. Eng., vol. 55, no. 6, pp. 744–746, 1977, doi: 10.1002/cjce.5450550619. DOI: https://doi.org/10.1002/cjce.5450550619

N. Afzal, “Heat transfer from a stretching surface,” Int. J. Heat Mass Transf., vol. 36, no. 4, pp. 1128–1131, Mar. 1993, doi: 10.1016/S0017-9310(05)80296-0. DOI: https://doi.org/10.1016/S0017-9310(05)80296-0

M. E. Ali, “Heat transfer characteristics of a continuous stretching surface,” Wärme - Stoffübertrag., vol. 29, no. 4, pp. 227–234, Mar. 1994, doi: 10.1007/BF01539754. DOI: https://doi.org/10.1007/BF01539754

E. M. A. Elbashbeshy, “Heat transfer over an exponentially stretching continuous surface with suction,” Arch. Mech., vol. 53, no. 6, Art. no. 6, Jan. 2001, doi: 10.24423/aom.80.

J. Buongiorno, “Convective Transport in Nanofluids,” J. Heat Transf., vol. 128, no. 3, pp. 240–250, Aug. 2005, doi: 10.1115/1.2150834. DOI: https://doi.org/10.1115/1.2150834

W. A. Khan and I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet,” Int. J. Heat Mass Transf., vol. 53, no. 11, pp. 2477–2483, May 2010, doi: 10.1016/j.ijheatmasstransfer.2010.01.032. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032

P. Rana and R. Bhargava, “Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: A numerical study,” Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 1, pp. 212–226, Jan. 2012, doi: 10.1016/j.cnsns.2011.05.009. DOI: https://doi.org/10.1016/j.cnsns.2011.05.009

S. E. Ghasemi, M. Hatami, D. Jing, and D. D. Ganji, “Nanoparticles effects on MHD fluid flow over a stretching sheet with solar radiation: A numerical study,” J. Mol. Liq., vol. 219, pp. 890–896, Jul. 2016, doi: 10.1016/j.molliq.2016.03.065. DOI: https://doi.org/10.1016/j.molliq.2016.03.065

S. Sadighi, H. Afshar, M. Jabbari, and H. Ahmadi Danesh Ashtiani, “Heat and mass transfer for MHD nanofluid flow on a porous stretching sheet with prescribed boundary conditions,” Case Stud. Therm. Eng., vol. 49, p. 103345, Sep. 2023, doi: 10.1016/j.csite.2023.103345. DOI: https://doi.org/10.1016/j.csite.2023.103345

O. Pourmehran, M. Rahimi-Gorji, and D. D. Ganji, “Heat transfer and flow analysis of nanofluid flow induced by a stretching sheet in the presence of an external magnetic field,” J. Taiwan Inst. Chem. Eng., vol. 65, pp. 162–171, Aug. 2016, doi: 10.1016/j.jtice.2016.04.035. DOI: https://doi.org/10.1016/j.jtice.2016.04.035

K. Bhattacharyya, S. Mukhopadhyay, and G. C. Layek, “Slip effects on boundary layer stagnation-point flow and heat transfer towards a shrinking sheet,” Int. J. Heat Mass Transf., vol. 54, no. 1, pp. 308–313, Jan. 2011, doi: 10.1016/j.ijheatmasstransfer.2010.09.041. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.041

S. Mukhopadhyay, “Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation,” Ain Shams Eng. J., vol. 4, no. 3, pp. 485–491, Sep. 2013, doi: 10.1016/j.asej.2012.10.007. DOI: https://doi.org/10.1016/j.asej.2012.10.007

A. Mishra and M. Kumar, “Velocity and thermal slip effects on MHD nanofluid flow past a stretching cylinder with viscous dissipation and Joule heating,” SN Appl. Sci., vol. 2, no. 8, p. 1350, Jul. 2020, doi: 10.1007/s42452-020-3156-7. DOI: https://doi.org/10.1007/s42452-020-3156-7

A. Al-Zubaidi, H. Abutuqayqah, B. Ahmad, S. Bibi, T. Abbas, and S. Saleem, “Analysis of slip condition in MHD nanofluid flow over stretching sheet in presence of viscous dissipation: Keller box simulations,” Alex. Eng. J., vol. 82, pp. 26–34, Nov. 2023, doi: 10.1016/j.aej.2023.09.055. DOI: https://doi.org/10.1016/j.aej.2023.09.055

V. Poply, P. Singh, and A. K. Yadav, “A study of temperature-dependent fluid properties on MHD free stream flow and heat transfer over a non-linearly stretching sheet,” Procedia Eng., vol. 127, pp. 391–397, Jan. 2015, doi: 10.1016/j.proeng.2015.11.386. DOI: https://doi.org/10.1016/j.proeng.2015.11.386

V. Vinita and V. Poply, “Impact of outer velocity MHD slip flow and heat transfer of nanofluid past a stretching cylinder,” Mater. Today Proc., vol. 26, pp. 3429–3435, 2020, doi: 10.1016/j.matpr.2019.11.304. DOI: https://doi.org/10.1016/j.matpr.2019.11.304

S. Taneja, V. Poply, and P. Kumar, “Fluid properties of an unsteady MHD free stream flow over a stretching sheet in presence of radiation,” Heat Transf., vol. 52, no. 3, pp. 2383–2399, 2023, doi: 10.1002/htj.22788. DOI: https://doi.org/10.1002/htj.22788

A. Ishak, R. Nazar, N. Bachok, and I. Pop, “Melting heat transfer in steady laminar flow over a moving surface,” Heat Mass Transf., vol. 46, no. 4, pp. 463–468, Apr. 2010, doi: 10.1007/s00231-010-0592-8. DOI: https://doi.org/10.1007/s00231-010-0592-8

F. Mabood and K. Das, “Melting heat transfer on hydromagnetic flow of a nanofluid over a stretching sheet with radiation and second-order slip,” Eur. Phys. J. Plus, vol. 131, no. 1, p. 3, Jan. 2016, doi: 10.1140/epjp/i2016-16003-1. DOI: https://doi.org/10.1140/epjp/i2016-16003-1

Pardeep, V. Poply, and N. Sharma, “Impact of melting heat transfer and outer-velocity of casson nanofluid over a stretching sheet,” Mater. Today Proc., Jul. 2023, doi: 10.1016/j.matpr.2023.07.218. DOI: https://doi.org/10.1016/j.matpr.2023.07.218

Downloads

Published

2024-06-30

How to Cite

Seema, Tanwar, K., Poply, V., & Kumar, R. (2024). MELTING HEAT TRANSFER IN MAGNETOHYDRODYNAMIC SLIP NANOFLUID FLOW OVER STRETCHING SHEET WITH OUTER VELOCITY. ShodhKosh: Journal of Visual and Performing Arts, 5(6), 2539–2546. https://doi.org/10.29121/shodhkosh.v5.i6.2024.5628