SEGMENTATION OF SCEROTIC AND NON-SCEROTIC RENAL BIOPSIES USING IMAGE J

Authors

  • Sudha Rani U JNTUA College of Engineering, Anantapur, India
  • Dr. Subhas C Professor Anantapur, India

DOI:

https://doi.org/10.29121/shodhkosh.v4.i2.2023.5559

Keywords:

Imagej, Glomerular Sclerosis, Renal Pathol- Ogy, Image Segmentation, Computational Efficiency, Open-Source Software, Histopathological Quantification, Chronic Kidney Disease, Deep Learning Alternative, Mor- Phometric Analysis

Abstract [English]

Accurate identification and classifica- tion of glomeruli in renal biopsy specimens are fundamental for histopathological diagnosis and chronic kidney disease staging. While deep learning (DL) methodologies have advanced au- tomated segmentation, their reliance on exten- sive computational resources, large annotated datasets, and specialized expertise limits acces- sibility. This study introduces a standardized, open-source framework for glomerular segmenta- tion and sclerosis classification using ImageJ, cir- cumventing these barriers. Our pipeline inte- grates preprocessing, segmentation, and quantita- tive morphometric analysis to discriminate scle- rotic from non-sclerotic glomeruli based on struc- tural and textural biomarkers. The proposed method was validated using established perfor- mance metrics—Accuracy, Precision, Recall, and Intersection-over-Union (IoU)—on renal biopsy images. When benchmarked against contempo- rary DL-based segmentation techniques, our Im- ageJ workflow achieved comparable efficacy, while demonstrating superior computational efficiency, implementation simplicity, and methodological transparency. These results establish ImageJ as a practical, high-performance tool for glomeru- lar segmentation in renal pathology. The vali- dated workflow offers pathologists and researchers a resource-minimal, accessible alternative to com- putationally intensive DL systems, promoting scal- able adoption in clinical diagnostics and trans- lational research for objective histopathological quantification.

References

Harnessing AI for Kidney Glomeruli Classification

Gallego, J.; Pedraza, A.; Lopez, S.; Steiner, G.; Gonzalez, L.; Laurinavicius, A.; Bueno, G. Glomerulus classification and detection based on convolutional neural networks. J. Imaging 2018, 4, 20. [CrossRef]80.4 DOI: https://doi.org/10.3390/jimaging4010020

Cascarano, G.D.; Debitonto, F.S.; Lemma, R.; Brunetti, A.; Buongiorno, D.; De Feudis, I.; Guerriero, A.; Rossini, M.; Pesce, F.; Gesualdo, L.; et al. An Innovative Neural Network Framework for Glomerulus Classification Based on Morphological and Texture Features Evaluated in Histological Images of Kidney Biopsy; Springer: Berlin, Germany, 2019; pp. 727–738._66. [CrossRef]81.8 DOI: https://doi.org/10.1007/978-3-030-26766-7_66

Kawazoe, Y.; Shimamoto, K.; Yamaguchi, R.; Shintani-Domoto, Y.; Uozaki, H.; Fukayama, M.; Ohe, K. Faster R-CNN-based glomerular detection in multistained human whole slide images. J. Imaging 2018, 4, 91. [CrossRef]82.10 DOI: https://doi.org/10.3390/jimaging4070091

Ginley, B.; Lutnick, B.; Jen, K.Y.; Fogo, A.B.; Jain, S.; Rosenberg, A.; Walavalkar, V.; Wilding, G.; Tomaszewski, J.E.; Yacoub, R.; et al. Computational Segmentation and Classification of Diabetic Glomerulosclerosis. J. Am. Soc. Nephrol. 2019, 30, 1953–1967. [CrossRef] [PubMed]82.11 DOI: https://doi.org/10.1681/ASN.2018121259

Marsh, J.N.; Matlock, M.K.; Kudose, S.; Liu, T.C.; Stappenbeck, T.S.; Gaut, J.P.; Swamidass, S.J. Deep learning global glomerulosclerosis in transplant kidney frozen sections. IEEE Trans. Med. Imaging 2018, 37, 2718–2728. [CrossRef] [PubMed]83.12

Bukowy, J.D., et al., Region-Based Convolutional Neural Nets for Localization of Glomeruli in Trichrome-Stained Whole Kidney Sections. J Am Soc Nephrol, 2018. 29(8): p. 2081-2088102.42 DOI: https://doi.org/10.1681/ASN.2017111210

Kato, T., et al., Segmental HOG: new descriptor for glomerulus detection in kidney microscopy image. BMC Bioinformatics, 2015. 16: p. 316102.44

Marsh, J.N., et al., Deep Learning Global Glomerulosclerosis in Transplant Kidney Frozen Sections. IEEE Trans Med Imaging, 2018. 37(12): p. 2718-2728102.45 DOI: https://doi.org/10.1109/TMI.2018.2851150

Simon, O., et al., Multi-radial LBP Features as a Tool for Rapid Glomerular Detection and Assessment in Whole Slide Histopathology Images. Sci Rep, 2018. 8(1): p. 2032103. DOI: https://doi.org/10.1038/s41598-018-20453-7

Kato T, Relator R, Ngouv H, Hirohashi Y, Takaki O, Kakimoto T, et al. Segmental HOG: new descriptor for glomerulus detection in kidney microscopy image. BMC Bioinform. 2015;6:66108.20 DOI: https://doi.org/10.1186/s12859-015-0739-1

Kotyk T, Dey N, Ashour AS, Balas- Timar D, Chakraborty S, Ashour AS, et al. Measurement of glomerulus diameter and Bowman’s space width of renal albino rats. Comput Methods Prog Biomed. 2016;6:66109.22 DOI: https://doi.org/10.1016/j.cmpb.2015.10.023

Cascarano et al. BMC Med Inform Decis Mak (2021) 21:300

Downloads

Published

2023-12-31

How to Cite

Rani U, S., & Subhas C. (2023). SEGMENTATION OF SCEROTIC AND NON-SCEROTIC RENAL BIOPSIES USING IMAGE J. ShodhKosh: Journal of Visual and Performing Arts, 4(2), 4656–4664. https://doi.org/10.29121/shodhkosh.v4.i2.2023.5559