APPROXIMATION OF FIXED POINT FOR F ITERATIVE ALGORITHM AND SOLUTION OF A DELAY DIFFERENTIAL EQUATION

Authors

  • Ashish Kumar Department of Mathematics, Baba Masthnath University, Asthal Bohar, Rohtak 2 Ravi Parkash Bhokal Govt. College Dujana (Jhajjar)
  • Ravi Parkash Bhokal Govt. College Dujana (Jhajjar)

DOI:

https://doi.org/10.29121/shodhkosh.v5.i7.2024.5260

Keywords:

Delay Differential Equation, Data Dependence Result, F-Iteration

Abstract [English]

The paper reports convergence, stability and data dependence results for the operators satisfying contractive conditions and contractive condition of rational expression using F iteration scheme in Banach space. With the help of suitable numerical examples, it is claimed that F iteration process is more efficient than many other iterative schemes available in literature. As an application, we have proposed solution to a delay differential equation. Our results are new and extends and improves many corresponding results available in the literature.
Subject classification 47H10, 47H09, 49M05, 54H25

References

Abbas, M; Nazir, T. A new faster iteration process applied to constrained minimization and feasibility problem. Matematichki Vesnik. 2014, 66, 223-224.

Ali,F; Ali,J. A new iterative scheme to approximating fixed points and the solution of a delay differential equation. Journal of Nonlinear Convex Analysis. 2020, 21, 1251-1268

Agarwal, R.P., O'Regan, D.; Sahu, D. R. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. Journal of Convex Analysis. 2007, 8(1), 61-79.

Berinde, V. Iterative approximation of fixed points. In: Lecture Notes in Mathematics. Springer: Berlin/ Heidelberg, Germany. 2007

Gursoy, F., Karakaya, V. A Picard-S hybrid type iteration method for solving a differential equation with retarded arguments. arXiv. 2014, 1403, 25-46.

Ishikawa, S. Fixed points by a new iteration method. Proceedings of the American Mathematical Society. 1974, 1, 147-150. DOI: https://doi.org/10.1090/S0002-9939-1974-0336469-5

Mann, W. R. Mean value methods in iteration. Proceedings of the American Mathematical Society.1953,4, 506 -510. DOI: https://doi.org/10.1090/S0002-9939-1953-0054846-3

Noor, M. A. New approximation schemes for general variational inequalities. Journal of Mathematical Analysis and Applications. 2000, 251, 217-229. DOI: https://doi.org/10.1006/jmaa.2000.7042

Ullah, K.; Arshad M. Numerical reckoning fixed points for Suzuki's generalized non expansive mappings via new iteration process. Filomat. 2018, 32910, 187-196. DOI: https://doi.org/10.2298/FIL1801187U

Panwar, A; Bhokal, R.P. Fixed Points results for K-iteration using nonlinear type mapping. Open Access Library Journal. 2019, 6(3), 1-14. DOI: https://doi.org/10.4236/oalib.1105245

Thakur, B.S; Thakur, D; Postolache, M. A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings. Applied Mathematics and Computation. 2016, 275, 147-155. DOI: https://doi.org/10.1016/j.amc.2015.11.065

Ostrowski, A. M. The round off stability of iterations. Z. Angew. Math. Mech. 1967, 47 (1), 77-81. DOI: https://doi.org/10.1002/zamm.19670470202

Picard, E. Memoire sur la theorie des equations aux derivces particlles et. la methodedes approximations successive. J. Math. Pures. Appl. 1890,6,145-210.

Khan, J.H. A Picard-Mann hybrid iterative process. Fixed Point Theory and Applications. 2013,64,1-10. DOI: https://doi.org/10.1186/1687-1812-2013-69

Okeke, G.A.; Abbas, M. A solution of delay differential equation via Picard - Krasnoselskii hybrid iterative process. Arabian Journal of Mathematics. 2017, 6, 21-29. DOI: https://doi.org/10.1007/s40065-017-0162-8

Solutz, S.M., Grosan, T. Data dependence for Ishikawa Iteration when dealing with contractive like operators. Fixed Point Theory and Applications. 2008,1-7. DOI: https://doi.org/10.1155/2008/242916

Weng, X. Fixed point iteration for local strictly pseudo contractive mapping. Proceedings of the American Mathematical Society.1991, 113, 721-731. DOI: https://doi.org/10.2307/2048608

Okeke, G. A. Iterative approximation of fixed points of contraction mappings in complex valued Banach spaces. Arab Journal of Mathematical Science. 2019, 25(1), 83-105, DOI: https://doi.org/10.1016/j.ajmsc.2018.11.001

Ahmed, J, Ullah, K; Arshad M and De la Sen, M. Iterative approximation of fixed points by using F iteration process in Banach spaces. Journal of Function Spaces. 2021, 1-7. DOI: https://doi.org/10.1155/2021/1934274

Comas, G.H. Pavel, G; Rus, I; Rus, I.A. Introduction in the theory of operational equation. Ed. Dacia, Cluj-Napoco, 1976.

Downloads

Published

2024-07-31

How to Cite

Ashish Kumar, & Bhokal, R. P. (2024). APPROXIMATION OF FIXED POINT FOR F ITERATIVE ALGORITHM AND SOLUTION OF A DELAY DIFFERENTIAL EQUATION. ShodhKosh: Journal of Visual and Performing Arts, 5(7), 1261–1276. https://doi.org/10.29121/shodhkosh.v5.i7.2024.5260