INVESTIGATION ON THE STRUCTURAL, MAGNETIC, AND DIELECTRIC PROPERTIES OF MG2+ SUBSTITUTED NI-CD-IN SPINEL NANOSTRUCTURED FERRITES SYNTHESIZED BY COPRECIPITATION ROUTE

Authors

  • Dilip S. Badwaik Kamla Nehru Mahavidyalaya, Nagpur(M.S)-440024, India
  • Gaurav Kale Shri Vitthal Rukhmini Mahavidyalaya, Sawana(M.S)- 445205, India, Kamla Nehru Mahavidyalaya, Nagpur(M.S)-440024, India
  • Dnyaneshwar D. Mathankar V.P. Arts and Science College, Borgadi, Pusad -445215, India
  • Sarang R. Daf Shri Shivaji Science College ,Nagpur (M.S)-440012,India
  • Shrikant M. Suryawanshi Kamla Nehru Mahavidyalaya, Nagpur(M.S)-440024, India

DOI:

https://doi.org/10.29121/shodhkosh.v5.i2.2024.5055

Keywords:

Xrd, Ftir, Vsm and Dielectric Spectroscopy

Abstract [English]

A soft spinel ferrite has the chemical formula MgxNi0.6Cd0.4-xFe2-yInyO4, where X values are 0.0, 0.1, 0.2, 0.3, and 0.4, and y is fixed at 0.05. These are labelled as GK6, GK7, GK8, GK9, and GK10 and are made using the coprecipitation method. X-ray diffraction patterns show that the crystallite size decreases from 21 nm to 10 nm, and the lattice dimension shrinks from 8.4839 to 8.4175 Å. FTIR analysis shows a strong vibrational band for the Fe-O group between 400 and 4000 cm⁻¹, which confirms the formation of spinel ferrite. VSM analysis indicates that coercivity increases from 297 to 338 Oe. However, retentivity decreases from 8.87 to 1.99 emu/g, and magnetic saturation drops from 54 to 22 emu/g. The impedance analyzer shows lower losses at high frequencies, suggesting that this material is suitable for microwave devices.

References

Narang, Sukhleen Bindra, and Kunal Pubby. "Nickel spinel ferrites: a review." Journal of Magnetism and Magnetic Materials 519 (2021): 167163. DOI: https://doi.org/10.1016/j.jmmm.2020.167163

Dhiman, Pooja, et al. "Basics of ferrites: types and structures." Ferrites and Multiferroics: Fundamentals to Applications (2021): 1-25. DOI: https://doi.org/10.1007/978-981-16-7454-9_1

Aman, Salma, et al. "Synthesis and characterization of copper-based spinel ferrites for high frequency applications." Journal of Magnetism and Magnetic Materials 547 (2022): 168778. DOI: https://doi.org/10.1016/j.jmmm.2021.168778

Ramadan, Rania, Vuk Uskoković, and Mai M. El-Masry. "Triphasic CoFe2O4/ZnFe2O4/CuFe2O4 nanocomposite for water treatment applications." Journal of Alloys and Compounds 954 (2023): 170040. DOI: https://doi.org/10.1016/j.jallcom.2023.170040

Fatima, Gul, et al. "Mn-doped BaFe12O19 nanoparticles synthesis via micro-emulsion route: solar light-driven photo-catalytic degradation of CV, MG and RhB dyes and antibacterial activity." Materials Research Bulletin 168 (2023): 112491. DOI: https://doi.org/10.1016/j.materresbull.2023.112491

Gaffar, Shayista, Amit Kumar, and Ufana Riaz. "Synthesis techniques and advance applications of spinel ferrites: A short review." Journal of Electroceramics 51.4 (2023): 246-257. DOI: https://doi.org/10.1007/s10832-023-00333-x

Bielan, Zuzanna, et al. "Application of spinel and hexagonal ferrites in heterogeneous photocatalysis." Applied Sciences 11.21 (2021): 10160. DOI: https://doi.org/10.3390/app112110160

Katoch, Gaurav, et al. "Crystal structure, synthesis, properties and potential applications of cobalt spinel ferrite: A brief review." Materials Today: Proceedings (2023). DOI: https://doi.org/10.1016/j.matpr.2023.03.585

Katoch, Gaurav, et al. "Recent advances in processing, characterizations and biomedical applications of spinel ferrite nanoparticles." Ferrite: Nanostructures with Tunable Properties and Diverse Applications 112 (2021): 62-120. DOI: https://doi.org/10.21741/9781644901595-2

Hao, Aize, and Xueer Ning. "Recent advances in spinel ferrite-based thin films: Synthesis, performances, applications, and beyond." Frontiers in Materials 8 (2021): 718869. DOI: https://doi.org/10.3389/fmats.2021.718869

El Heda, Issa, et al. "The effect of transition metal substitution on the structural, elastic, optical, electrical and dielectric properties of M0. 5Fe2· 5O4 (M= Co and Mg) synthesized by the auto combustion method." Materials Chemistry and Physics 296 (2023): 127297. DOI: https://doi.org/10.1016/j.matchemphys.2023.127297

Hasan, M. S., et al. "Structural, optical, electrical and magnetic tuning based on Zn substitution at a site in yttrium doped spinel ferrites." Materials Chemistry and Physics 301 (2023): 127538. DOI: https://doi.org/10.1016/j.matchemphys.2023.127538

Yang, Hu, et al. "Effect of Cd2+ substitution on structural–magnetic and dielectric properties of Ni–Cu–Zn spinel ferrite nanomaterials by Sol–Gel." Molecules 28.16 (2023): 6110. DOI: https://doi.org/10.3390/molecules28166110

Channagoudra, Ganesha, Ajay Kumar Saw, and Vijaylakshmi Dayal. "Role of structure and cation distribution on magnetic and electrical properties in inverse spinel copper ferrite." Journal of Physics and Chemistry of Solids 154 (2021): 110086. DOI: https://doi.org/10.1016/j.jpcs.2021.110086

Almessiere, Munirah A., et al. "Impact of the indium content on structural, magnetic, and electrodynamic properties of nanocomposites based on In-substituted Sr hexaferrite and Ni–Zn spinel ferrite with excellent absorption characteristics." Ceramics International 49.8 (2023): 12885-12894. DOI: https://doi.org/10.1016/j.ceramint.2022.12.160

Ikram, Salma, et al. "Role of nature of rare earth ion dopants on structural, spectral, and magnetic properties in spinel ferrites." Journal of Superconductivity and Novel Magnetism 34 (2021): 1745-1751. DOI: https://doi.org/10.1007/s10948-020-05723-8

Xu, C., et al. "Control of dislocation density maximizing precipitation strengthening effect." Journal of Materials Science & Technology 127 (2022): 133-143. DOI: https://doi.org/10.1016/j.jmst.2022.03.010

Fan, Haidong, et al. "Strain rate dependency of dislocation plasticity." Nature communications 12.1 (2021): 1845. DOI: https://doi.org/10.1038/s41467-021-21939-1

Suryawanshi, Shrikant M., et al. "A comprehensive study on structural, magnetic and dielectric properties of Ni0. 3Cu0. 3Zn0. 4Fe1. 8Cr0. 2O4 nanoparticles synthesized by sol-gel auto combustion route." Journal of Molecular Structure 1272 (2023): 134173. DOI: https://doi.org/10.1016/j.molstruc.2022.134173

Abouhaswa, A. S., et al. "Investigation of crystal structure, electrical and magnetic properties of spinel Mn-Cd ferrite nanoparticles." Journal of Inorganic and Organometallic Polymers and Materials (2022): 1-13.

Sundararajan, M., et al. "A comparative study on NiFe2O4 and ZnFe2O4 spinel nanoparticles: Structural, surface chemistry, optical, morphology and magnetic studies." Physica B: Condensed Matter 644 (2022): 414232. DOI: https://doi.org/10.1016/j.physb.2022.414232

Venkatesh, Nakaraboina, et al. "FTIR, optical, electrical and magnetic properties of SM3+ doped MG nano ferrites." Biointerface Res. Appl. Chem 11.6 (2021): 15037-15050. DOI: https://doi.org/10.33263/BRIAC116.1503715050

Jadhav, Swapnil A., et al. "Visible light photocatalytic activity of magnetically diluted Ni–Zn spinel ferrite for active degradation of rhodamine B." Ceramics International 47.10 (2021): 13980-13993. DOI: https://doi.org/10.1016/j.ceramint.2021.01.267

Li, Junjiao, et al. "Effect of rare earth Nd3+ doping contents on physical, structural, and magnetic properties of Co–Ni spinel ferrite nanoparticles." Journal of Rare Earths 41.11 (2023): 1746-1753. DOI: https://doi.org/10.1016/j.jre.2022.12.007

Sharma, Anjori, et al. "Enhancing high frequency magneto-dielectric performance with exchange-coupled garnet/spinel ferrite (Y3Fe5O12/Mg0. 4Cd0. 4Co0. 2Fe2O4) composites." Nano-Structures & Nano-Objects 36 (2023): 101035. DOI: https://doi.org/10.1016/j.nanoso.2023.101035

Pham, Tuyet Nhung, et al. "Toward a comprehensive understanding of effect of cation distribution and M2+ constituent in spinel ferrite nanocrystals MFe2O4 (M= Co, Mn, and Ni) on the electrochemical response in sensitive detection of chloramphenicol." Journal of Alloys and Compounds 949 (2023): 169880. DOI: https://doi.org/10.1016/j.jallcom.2023.169880

Channagoudra, Ganesha, et al. "Study of cation distribution in La3+ and Eu3+ substituted cobalt ferrite and its effect on magnetic properties." Journal of Magnetism and Magnetic Materials 559 (2022): 169550. DOI: https://doi.org/10.1016/j.jmmm.2022.169550

Kumari, Kavita, et al. "Dielectric properties of spinel ferrite nanostructures." Ferrite Nanostructured Magnetic Materials. Woodhead Publishing, 2023. 599-631. DOI: https://doi.org/10.1016/B978-0-12-823717-5.00003-6

Paswan, Sanjeet Kumar, et al. "Electrical transport properties of nanocrystalline and bulk nickel ferrite using complex impedance spectroscopy: a comparative study." Physica Scripta 97.9 (2022): 095812. DOI: https://doi.org/10.1088/1402-4896/ac87dc

Wang, Lu, et al. "Progress on polymer composites with low dielectric constant and low dielectric loss for high-frequency signal transmission." Frontiers in Materials 8 (2021): 774843.

Qin, Ming, Limin Zhang, and Hongjing Wu. "Dielectric loss mechanism in electromagnetic wave absorbing materials." Advanced Science 9.10 (2022): 2105553. DOI: https://doi.org/10.1002/advs.202105553

Wang, Lu, et al. "Progress on polymer composites with low dielectric constant and low dielectric loss for high-frequency signal transmission." Frontiers in Materials 8 (2021): 774843. DOI: https://doi.org/10.3389/fmats.2021.774843

Yang, Minzheng, et al. "High‐energy‐density and high efficiency polymer dielectrics for high temperature electrostatic energy storage: a review." Small 18.50 (2022): 2205247. DOI: https://doi.org/10.1002/smll.202205247

Ashery, Adel, A. E. H. Gaballah, and Emad M. Ahmed. "Tuned high dielectric constant, low dielectric loss tangent with positive and negative values for PPy/MWCNTs/TiO2/Al2O3/n-Si." Journal of experimental nanoscience 16.1 (2021): 309-343. DOI: https://doi.org/10.1080/17458080.2021.1973667

Yin, Qian, et al. "Reducing intermolecular friction work: preparation of polyimide films with ultralow dielectric loss from MHz to THz frequency." Industrial & Engineering Chemistry Research 61.49 (2022): 17894-17903. DOI: https://doi.org/10.1021/acs.iecr.2c03130

Downloads

Published

2024-02-29

How to Cite

Badwaik, D. S., Kale, G., Mathankar, D. D., Daf, S. R., & Suryawanshi, S. M. (2024). INVESTIGATION ON THE STRUCTURAL, MAGNETIC, AND DIELECTRIC PROPERTIES OF MG2+ SUBSTITUTED NI-CD-IN SPINEL NANOSTRUCTURED FERRITES SYNTHESIZED BY COPRECIPITATION ROUTE. ShodhKosh: Journal of Visual and Performing Arts, 5(2), 1213–1223. https://doi.org/10.29121/shodhkosh.v5.i2.2024.5055