A REVIEW ON FTIR SPECTROSCOPIC ANALYSIS

Authors

  • Suraj Singh Bhadoria Phd Scholar from Vinayaka Mission Homoeopathic Medical College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem Tamil Nadu
  • H Venkatesan Professor and HOD, Department of Practice of Medicine, Vinayaka Mission's Homoeopathic Medical College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem, Tamil Nadu
  • G S Chakraborty Principal, Parul Institute of Pharmacy and Research, Parul University, Vadodara, Gujarat

DOI:

https://doi.org/10.29121/shodhkosh.v5.i2.2024.5016

Keywords:

Ftir, Natural Tissues, Spectroscopy, Biological Tissues

Abstract [English]

This article examines some of the most recent developments in FTIR spectroscopy in fields pertaining to cell biology and natural tissues. It outlines some of the most popular peak frequencies and their assignments and is the second review article that came from an extensive investigation into the use of spectroscopic technologies in biological studies. By incorporating the majority of the significant peaks seen in natural tissues, these investigations seek to create a library of molecular fingerprints that will aid researchers in determining the chemical structure of biological tissues. There appears to be a significant resemblance in determining the peaks of identical sections of the FTIR spectra despite the use of different techniques. Therefore, it is thought that creating a distinctive collection

References

Mahadevan-Jansen, A. and Richards-Kortum, R. (1997) Raman spectroscopy for cancer detection, 19th Int. Conf. IEEE EMBS, Chicago, Oct 30–Nov 2.

Hanlon, E.B., Manoharan, R., Koo, T.-W., Shafer, K.E., Motz, J.T., Fitzmaurice, M., Kramer, J.R., Itzkan, I., Dasari, R.R., and Feld, M.S. (2000) Prospects for in vivo Raman spectroscopy. Physics in Medicine and Biology, 45: 1–59. DOI: https://doi.org/10.1088/0031-9155/45/2/201

Dukor, R.K. (2002) Vibrational spectroscopy in the detection of cancer. Biomedical Applications, 5: 3335–3359 DOI: https://doi.org/10.1002/0470027320.s8107

Choo-Smith, L.-P., Edwards, H.G.M., Endtz, H.P., Kros, J.M., Heule, F., Barr, H., Robinson, J.S., Jr., Bruining, H.A., and Pupells, G.J. (2002) Medical applications of Raman spectroscopy: from proof of principle to clinical implementation. Biopolymers (Biospectroscopy), 67: 1–9. DOI: https://doi.org/10.1002/bip.10064

Swinson, B., Jerjes, W., El-Maaytah, M., Norris, P., and Hopper, C. (2002) Optical techniques in diagnosis of head and neck malignancy. Oral Oncology, 42: 221–228. DOI: https://doi.org/10.1016/j.oraloncology.2005.05.001

Shaw, R.A. and Mantsch, H.H. (1999) Vibrational biospectroscopy: from plants to animals to humans. A historical perspective. Journal of Molecular Structure, 480–481: 1–13. DOI: https://doi.org/10.1016/S0022-2860(98)00648-6

Petrich, W. (2001) Mid-infrared and Raman spectroscopy for medical diagnostics. Applied Spectroscopy Reviews, 36 (2&3): 181–237. DOI: https://doi.org/10.1081/ASR-100106156

Zeng, H., McWilliams, A., and Lam, S. (2004) Optical spectroscopy and imaging for early lung cancer detection: a review. Photodiagnosis and Photodinamic Therapy, 1: 111–122. DOI: https://doi.org/10.1016/S1572-1000(04)00042-0

Parker, M.F. (2005) Emerging technology in cervical cancer screening: spectroscopy. Clinical Obstetrics and Gynecology, 48 (1): 209–217. DOI: https://doi.org/10.1097/01.grf.0000151586.23981.74

Dekker, E. and Fockens, P. (2005) Advances in colonic imaging: new endoscopic imaging methods. European Journal of Gasteroenterology and Hepatology, 17 (8): 803–808. DOI: https://doi.org/10.1097/00042737-200508000-00004

Demos, S.G., Vogel, A.J., and Gandjbakhche, A.H. (2006) Advances in optical spectroscopy and imaging of breast lesions. Journal of Mammary Gland Biology, 11: 165–181. DOI: https://doi.org/10.1007/s10911-006-9022-4

Pitt, G.D., Batchelder, D.N., Bennett, R., Bormett, R.W., Hayward, I.P., Smith, B.J.E., Williams, K.P.J., Yang, Y.Y., Baldwin, K.J., and Webster, S. (2005) Engineering aspects and applications of the new Raman instrumentation. IEE Proceedings-Science, Measurement and Technology, 152 (6): 241–318. DOI: https://doi.org/10.1049/ip-smt:20050015

Ellis, D.I. and Goodacre, R. (2006) Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst, 131: 875–885. DOI: https://doi.org/10.1039/b602376m

Choo-Smith, L.P., Maquelin, K., van Vreeswijk, T., Bruining, H.A., Puppels, G.J., Ngo Thi, N.A., Kirschner, C., Naumann, D., Ami, D., Villa, A.M., Orsini, F., Doglia, S.M., Lamfarraj, H., Sockalingum, G.D., Manfait, M., Allouch, P., and Endtz, H.P. (2001) Investigating microbial (micro)colony heterogeneity by vibrational spectroscopy. Applied Environironmental Microbiology, 67 (4): 1461–1469. DOI: https://doi.org/10.1128/AEM.67.4.1461-1469.2001

Kidder, L.H., Colarusso, P., Stewart, S.A., Levin, I.W., Appel, N.M., Lester, D.S., Pentchev, P.G., and Lewis, E.N. (1999) Infrared spectroscopic imaging of the biochemical modifications induced in the cerebellum of the Niemann–Pick type C mouse. Journal of Biomedical Optics, 4 (1): 7–13. DOI: https://doi.org/10.1117/1.429915

Kang, G.S., Ko, H.J., and Choi, C.K. (2003) Chemical bond structure of a-C:F films with a low dielectric constant deposited by using CH4/CF4 ICPCVD. Journal of the Korean Physical Society, 42 (5): 676–681.

Hofman, M., Pasieczna, S., Wachowski, L., and Ryczkowski, J. (2006) Speciation of functional groups formed on the surface of carbonaceous materials modified by NO. Journal of Physics IV France, 137: 287–290. DOI: https://doi.org/10.1051/jp4:2006137056

Movasaghi, Z., Rehman, S., and Rehman, I.U. (2007) Raman spectroscopy of biological tissues. Applied Spectroscopy Reviews, 42 (5): 493–541. DOI: https://doi.org/10.1080/05704920701551530

Mandeville, C.W., Webster, J.D., Rutherford, M.J., Taylor, B.E., Timbal, A., and Faure, K. (2002) Determination of molar absorptivities for infrared absorption bands of H2O in andesitic glasses. American Mineralogist, 87: 813–821. DOI: https://doi.org/10.2138/am-2002-0702

Seaman, S.J., Dyar, M.D., Marinkovic, N., and Dunbar, N.W. (2006) An FTIR study of hydrogen in anorthoclase and associated melt inclusions. American Mineralogist, 91: 12–20. DOI: https://doi.org/10.2138/am.2006.1765

Fabian, H., Jackson, M., Murphy, L., Watson, P.H., Fichtner, I., and Mantsch, H.H. (1995) A comparative infrared spectroscopic study of human breast tumors and breast tumor cell xenografts. Biospectroscopy, 1 (1): 37–45. DOI: https://doi.org/10.1002/bspy.350010106

Conroy, J., Ryder, A.G., Leger, M.N., Hennessey, K., and Madden, M.G. (2005) Qualitative and quantitative analysis of chlorinated solvents using Raman Spectroscopy and machine learning. Proceedings of the International Society of Optical Engineers, 5826: 131–142. DOI: https://doi.org/10.1117/12.605056

Alfano, R.R., Tang, G.C., Pradhan, A., Lam, W., Choy, D.S.J., and Opher, E. (1987) Optical spectroscopic diagnosis of cancer and normal breast tissues. Journal of the Optical Society of America B, 1987, 6 (5): 1015..

Wood, B.R., Quinn, M.A., Burden, F.R., and McNaughton, D. (1996) An investigation into FT-IR spectroscopy as a bio-diagnostic tool for cervical cancer. Biospectroscopy, 2: 143–153. DOI: https://doi.org/10.1002/(SICI)1520-6343(1996)2:3<143::AID-BSPY1>3.0.CO;2-9

Chiriboga, L., Xie, P., Yee, H., Vigorita, V., Zarou, D., Zakim, D., and Diem, M. (1998) Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix. Biospectroscopy, 4: 47–53. DOI: https://doi.org/10.1002/(SICI)1520-6343(1998)4:1<47::AID-BSPY5>3.3.CO;2-1

Wood, B.R., Quinn, M.A., Tait, B., Ashdown, M., Hislop, T., Romeo, M., and McNaughton, D. (1998) FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies. Biospectroscopy, 4: 75–91. DOI: https://doi.org/10.1002/(SICI)1520-6343(1998)4:2<75::AID-BSPY1>3.0.CO;2-R

Sindhuphak, R., Issaravanich, S., UdomprasertgulV., Srisookho, P., Warakamin, S., Sindhuphak, S., Boonbundarlchai, R., and Dusitsin, N. (2003) A new approach for the detection of cervical cancer in Thai women. Gynecologic Oncology, 90: 10–14. DOI: https://doi.org/10.1016/S0090-8258(03)00196-3

Mordechai, S., Sahu, R.K., Hammody, Z., Mark, S., Kantarovich, K., Guterman, H., Podshyvalov, J., Goldstein, J., and Argov, S. (2004) Possible common biomarkers from FTIR microspectroscopy of cervical cancer and melanoma. Journal of Microscopy, 215 (1): 86–91. DOI: https://doi.org/10.1111/j.0022-2720.2004.01356.x

Chiriboga, L., Xie, P., Vigorita, V., Zarou, D., Zakin, D., and Diem, M. (1998) Infrared spectroscopy of human tissue. II. A comparative study of spectra of biopsies of cervical squamous epithelium and of exfoliated cervical cells. Biospectroscopy, 4: 55–59. 30. Wong, P.T.T., Lacelle, S., Fung, M.F.K., Senterman, M., and Mikhael, N.Z. (1995) Characterization of exfoliated cells and tissues from human endocervix and ectocervix by FTIR and ATR/FTIR spectroscopy. Biospectroscopy, 1 (5): 357–364. DOI: https://doi.org/10.1002/(SICI)1520-6343(1998)4:1<55::AID-BSPY6>3.3.CO;2-Y

Fung, M.F.K., Senterman, M.K., Mikhael, N.Z., Lacelle, S., and Wong, P.T.T. (1996) Pressure-tuning fourier transform infrared spectroscopic study of carcinogenesis in human endometrium. Biospectroscopy, 2: 155–165. DOI: https://doi.org/10.1002/(SICI)1520-6343(1996)2:3<155::AID-BSPY2>3.3.CO;2-F

Utzinger, U.R.S., Heintzelman, D.L., Mahadevan-Jansen, A., Malpica, A., Follen, M., and Richards-Kortum, R. (2001) Near-infrared Raman spectroscopy for in vivo detection of cervical precancers. Applied Spectroscopy, 55 (8): 955–959. DOI: https://doi.org/10.1366/0003702011953018

Wang, H.P., Wang, H.-C., and Huang, Y.-J. (1997) Microscopic FTIR studies of lung cancer cells in pleural fluid. Science of the Total Environment, 204: 283–287. DOI: https://doi.org/10.1016/S0048-9697(97)00180-0

Yano, K., Ohoshima, S., Grotou, Y., Kumaido, K., Moriguchi, T., and Katayama, H. (2000) Direct measurement of human lung cancerous and noncancerous tissues by fourier transform infrared microscopy: can an infrared microscope be used as a clinical tool? Analytical Biochemistry, 287: 218–225. FTIR Spectroscopy of Biological Tissues 175 Downloaded by [Mahatma Gandhi University] at 03:10 16 March 2016 DOI: https://doi.org/10.1006/abio.2000.4872

Yang, Y., Sule-Suso, J., Sockalingum, G.D., Kegelaer, G., Manfait, M., and El Haj, A.J. (2005) Study of tumor cell invasion by Fourier transform infrared microspectroscopy. Biopolymers, 78: 311–317. DOI: https://doi.org/10.1002/bip.20297

Eckel, R., Huo, H., Guan, H.-W., Hu, X., Che, X., and Huang, W.-D. (2001) Characteristic infrared spectroscopic patterns in the protein bands of human breast cancer tissue. Vibrational Spectroscopy, 27: 165–173. DOI: https://doi.org/10.1016/S0924-2031(01)00134-5

Kline, N.J. and Treado, P.J. (1997) Raman chemical imaging of breast tissue. Journal of Raman Spectroscopy, 28: 119–124. DOI: https://doi.org/10.1002/(SICI)1097-4555(199702)28:2/3<119::AID-JRS73>3.3.CO;2-V

Shafer-Peltier, K.E., Haka, A.S., Fitzmaurice, M., Crowe, J., Dasar, R.R., and Feld, M.S. (2002) Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo. Journal of Raman Spectroscopy, 33: 552–563. DOI: https://doi.org/10.1002/jrs.877

Frank, C.J., McCreecy, R.L., and Redd, D.C.B. (1995) Raman spectroscopy of normal and diseased human breast tissues. Analytical Chemistry, 67: 777–783. DOI: https://doi.org/10.1021/ac00101a001

Sukuta, S. and Bruch, R. (1999) Factor analysis of cancer Fourier transform infrared evanescent wave fiberoptical (FTIR-FEW) spectra. Lasers in Surgery and Medicine, 24: 382–388. DOI: https://doi.org/10.1002/(SICI)1096-9101(1999)24:5<382::AID-LSM9>3.0.CO;2-G

Wong, P.T.T., Goldstein, S.M., Grekin, R.C., Godwin, T.A., Pivik, C., and Rigas, B. Distinct infrared spectroscopic patterns of human basal cell carcinoma. Cancer Research, 53 (4): 762–765.

Lucassen, G.W., Van Veen, G.N., and Jansen, J.A. (1998) Band analysis of hydrated human skin stratum corneum attenuated total reflectance Fourier transform infrared spectra in vivo. Journal of Biomedical Optics, 3: 267–280. DOI: https://doi.org/10.1117/1.429890

McIntosh, L.M., Jackson, M., Mantsch, H.H., Stranc, M.F., Pilavdzic, D., and Crowson, A.N. (1999) Infrared spectra of basal cell carcinomas are distinct from non-tumor-bearing skin components. Journal of Investigative Dermatology, 112: 951–956. DOI: https://doi.org/10.1046/j.1523-1747.1999.00612.x

Barry, B.W., Edwards, H.G.M., and Williams, A.C. (1992) Fourier transform Raman and infrared vibrational study of human skin: assignment of spectral bands. Journal of Raman Spectroscopy, 23: 641–645. 45. Fujioka, N., Morimoto, Y., Arai, T., and Kikuchi, M. (2004) Discrimination between normal and malignant human gastric tissues by Fourier transform infrared spectroscopy. Cancer Detection & Prevention, 28: 32–36. 46. Weng, S.F., Ling, X.F., Song, Y.Y., Xu, Y.Z., Li, W.H., Zhang, X., Yang, L., Sun, W., Zhou, X., and Wu, J. (2000) FT-IR fiber optics and FT-Raman spectroscopic studies for the diagnosis of cancer. American Clinical Laboratory, 19 (7): 20. 47. Mordechai, S., Salman, A.O., Argov, S., Cohen, B., Erukhimovitch, V., Goldstein, J., Chaims, O., and Hammody, Z. (2000) Fourier-transform infrared spectroscopy of human cancerous and normal intestine. Proceedings of the SPIE, 3918: 66–77.

Li, Q.B., Sun, X.J., Xu, Y.Z., Yang, L.M., Zhang, Y.F., Weng, S.F., Shi, J.S., and Wu, J.G. (2005) Diagnosis of gastric inflammation and malignancy in endoscopic biopsies based on Fourier transform infrared spectroscopy. Clinical Chemistry, 51 (2): 346–350. DOI: https://doi.org/10.1373/clinchem.2004.037986

Choo, L.-P., Mansfield, J.R., Pizzi, N., et al. (1995) Infrared spectra of human central nervous system tissue: Diagnosis of Alzheimer’s disease by multivariate analyses. Biospectroscopy, 1 (2): 141–148. DOI: https://doi.org/10.1002/bspy.350010208

Dovbeshko, G.I., Gridina, N.Y., Kruglova, E.B., and Pashchuk, O.P. (1997) FTIR spectroscopy studies of nucleic acid damage. Talanta, 53: 233–246. DOI: https://doi.org/10.1016/S0039-9140(00)00462-8

Yoshida, S., Miyazaki, M., Sakai, K., Takeshita, M., Yuasa, S., Sato, A., Kobayashi, T., Watanabe, S., and Okuyama, H. (1997) Fourier transform infrared spectroscopic analysis of rat brain microsomal membranes modified by dietary fatty acids: possible correlation with altered learning behavior. Biospectroscopy, 3 (4): 281–290. DOI: https://doi.org/10.1002/(SICI)1520-6343(1997)3:4<281::AID-BSPY3>3.0.CO;2-7

Fukuyama, Y., Yoshida, S., Yanagisawa, S., and Shimizu, M. (1999) A study on the differences between oral squamous cell carcinomas and normal oral mucosas measured by Fourier transform infrared spectroscopy. Biospectroscopy, 5: 117–126. 53. Andrus, P.G.L. and Strickland, R.D. (1998) Cancer grading by Fourier transform infrared spectroscopy. Biospectroscopy, 4: 37–46. DOI: https://doi.org/10.1002/(SICI)1520-6343(1999)5:2<117::AID-BSPY5>3.0.CO;2-K

Mordechai, S., Mordechai, J., Ramesh, J., Levi, C., Huleihel, M., Erukhimovitch, V., Moser, A., and Kapelushnik, J. (2001) Application of FTIR microspectroscopy for the follow-up of childhood leukaemia chemotherapy, Proceedings of SPIE Subsurface and Surface Sensing Technologies and Applications III, 4491: 243–250. DOI: https://doi.org/10.1117/12.450167

Andrus, P.G. (2006) Cancer monitoring by FTIR spectroscopy. Technology in Cancer Research and Treatment, 5 (2): 157–167.

Gazi, E., Dwyer, J., Gardner, P., Ghanbari-Siakhani, A., Wde, A.P., Lockyer, N.P., Vickerman, J.C., Clarke, N.W., Shanks, J.H., Scott, L.J., Hart, C.A., and Brown, M. (2003) Applications of Fourier transform infrared microspectroscopy in studies of benign prostate and prostate cancer. A pilot study. Journal of Pathology, 201: 99–108. DOI: https://doi.org/10.1002/path.1421

Paluszkiewicz, C. and Kwiatek, W.M. (2001) Analysis of human cancer prostate tissues using FTIR microscopy and SXIXE techniques. Journal of Molecular Structure, : 565–566, 329–334. DOI: https://doi.org/10.1016/S0022-2860(01)00527-0

Argov, S., Sahu, R.K., Bernshtain, E., Salam, A., Shohat, G., Zelig, U., and Mordechai, S. (2004) Inflammatory bowel diseases as an intermediate stage between normal and cancer: a FTIR-microspectroscopy approach. Biopolymers, 75: 384–392. DOI: https://doi.org/10.1002/bip.20154

Richter, T., Steiner, G., Abu-Id, M.H., Salzer, R., Gergmann, R., Rodig, H., and Johannsen, B. (2002) Identification of tumor tissue by FTIR spectroscopy in combination with positron emission tomography. Vibrational Spectroscopy, 2860. Rigas, B., Morgello, S., Goldman, I.S., and Wong, P.T.T. (1999) Human colorectal cancers display abnormal Fourier-transform infrared spectra, Proceedings of the National Academy of Sciences USA, 87: 8140–8144.

Rigas, B. and Wong, P.T.T. (1992) Human colon adenocarcinoma cell lines display infrared spectroscopic features of malignant colon tissues. Cancer Research, 52: 84–88.

Huleihel, M., Salman, A., Erukhimovich, V., Ramesh, J., Hammody, Z., and Mordechai, S. (2002) Novel optical method for study of viral carcinogenesis in vitro. Journal of Biochemical and Biophysical Methods, 50: 111–121. DOI: https://doi.org/10.1016/S0165-022X(01)00177-4

Mossoba, M.M., Al-Khaldi, S.F., Kirkwood, J., Fry, F.S., Sedman, J., and Ismail, A.A. (2005) Printing microarrays of bacteria for identification by infrared microspectroscopy. Vibrational Spectroscopy, 38: 229–235. DOI: https://doi.org/10.1016/j.vibspec.2005.04.006

Naumann, D. (1998) Infrared and NIR Raman spectroscopy in medical microbiology 3257: 245–257. DOI: https://doi.org/10.1117/12.306089

Dovbeshko, G.I., Chegel, V.I., Gridina, N.Y., Repnytska, O.P., Shirshov, Y.M., Tryndiak, V.P., Todor, I.M., and Solyanik, G.I. (2002) Surface enhanced IRabsorption of nucleic acids from tumor cells: FTIR reflectance study. Biopolymer (Biospectroscopy), 67: 470–486. 66. Jalkanen, K.J., Wu¨rtz Ju¨rgensen, V., Claussen, A., Rahim, A., Jensen, G.M., Wade, R.C., Nardi, F., Jung, C., Degtyarenko, I.M., Nieminen, R.M., Herrmann, F., Knapp-Mohammady, M., Niehaus, T.A., Frimand, K., and Suhai, S. (2006) Use of vibrational spectroscopy to study protein and DNA structure, hydration, and binding of biomolecules: A combined theoretical and experimental approach. Journal of Quantum Chemistry, 106: 1160–1198. 67. Binoy, J., Abraham, J.P., Joe, I.H., Jayakumar, V.S., Petit, G.R., and Nielsen, O.F. (2004) NIR-FT Raman and FT-IR spectral studies and ab initio calculations of the anti-cancer drug combretastatin-A4. Journal of Raman Spectroscopy, 35: 939–946.

Faolain, E.O., Hunter, M.B., Byrne, J.M., Kelehan, P., McNamer, M., Byrne, H.J., and Lyng, F.M. (2005) A study examining the effects of tissue processing on human tissue sections using vibrational spectroscopy. Vibrational Spectroscopy, 38: 121–127. DOI: https://doi.org/10.1016/j.vibspec.2005.02.013

Sahu, P.K. and Mordechai, S. (2005) Fourier transform infrared spectroscopy in cancer detection. Future Oncology, 1: 635–647. DOI: https://doi.org/10.2217/14796694.1.5.635

Pleshko, N.L., Boskey, A.L., and Mendelsohn, R. (1991) An FT-IR microscopic investigation of the effects of tissue preservation on bone. Calcified Tissue International, 51 (1): 72–77. DOI: https://doi.org/10.1007/BF00296221

Holman, H.Y.N., Martin, M.C., and McKinney, W.R. (2003) Synchrotron-based FTIR spectromicroscopy: cytotoxicity and heating considerations. Journal of Biological Physics, 29 (2–3): 275–286. DOI: https://doi.org/10.1023/A:1024465414395

Budevska, B.O., Sum, S.T., and Jones, T.J. (2003) Application of multivariate curve resolution for analysis of FT-IR microspectroscopic images of in situ plant tissue. Applied Spectroscopy, 57: 124–131. DOI: https://doi.org/10.1366/000370203321535015

Kleiner, O., Ramesh, J., Huleihel, M., Cohen, B., Kantarovich, K., Levi, C., Polyak, B., Marks, R.S., Mordehai, J., Cohen, Z., and Mordechai, S. (2002) A comparative study of gallstones from children and adults using FTIR spectroscopy and fluorescence microscopy. BMC Gastroenterology, 2: 3. DOI: https://doi.org/10.1186/1471-230X-2-3

Tarumi, M., Shimada, M., Murakami, T., Tamura, M., Shimada, M., Arimoto, H., and Yamada, Y. (2003) Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction. Physics in Medicine and Biology, 48: 2373–2390. DOI: https://doi.org/10.1088/0031-9155/48/15/309

Smith, R. and Rehman, I.U. (1994) Fourier transform Raman spectroscopic studies of human bone. Journal of Material Science; Materials in Medicine, 5 (9&10): 775–778. DOI: https://doi.org/10.1007/BF00120375

Schulz, H. and Baranska, M. (2007) Identification and qualification of valuable plant substances by IR and Raman spectroscopy. Vibrational Spectroscopy, 43: 13–25. DOI: https://doi.org/10.1016/j.vibspec.2006.06.001

Downloads

Published

2024-02-29

How to Cite

Bhadoria, S. S., H Venkatesan, & G S Chakraborty. (2024). A REVIEW ON FTIR SPECTROSCOPIC ANALYSIS. ShodhKosh: Journal of Visual and Performing Arts, 5(2), 1199–1204. https://doi.org/10.29121/shodhkosh.v5.i2.2024.5016