ORTHOPAEDIC IMPLANT: A COMPREHENSIVE STUDY OF ASSOCIATED RISK FACTORS
DOI:
https://doi.org/10.29121/shodhkosh.v5.i1.2024.4886Keywords:
Adverse Event, Metallosis, Meta-Analysis, Medical Device, Orthopaedic Implant, Surgical Site InfectionAbstract [English]
Introduction-Orthopaedic technology plays a significant role, including anything from entirely spinal systems to joint restoration. These devices are often composed of metal, ceramic, or polymer. Orthopaedic surgery has helped millions of patients by restoring their mobility, relieving their pain, and ultimately improving their quality of life. But their high risk of adverse effects such as device breakage, surgical site infections, discomfort, edema, and so forth limited their utilization. So, the primary objective of the current study is to estimate the prevalence of adverse events after orthopaedic implantation.
Methodology- A meta-analysis was conducted on adverse effects of orthopaedic implantation, examining 151 case studies started from year 2000 to 2022, using the Medline, Embace, and Google Scholar databases. The review focused on factors like implant type, patient age, gender, reaction start time, adverse events, clinical presentation, and results.
Result and Discussion- Research verified that male patients experience more adverse effects from orthopaedic implants due to increased BMI, which strains the implants. Lower limb surgery is more common due to weight-bearing implants. Common adverse reactions include metallosis, fracture, and infection. An accumulation of metal ions in the bloodstream causes the implant to become loose, induce inflammatory responses, and cause chronic pain around the implant site.
Conclusion- Factors like implant quality, selection, fixation, fracture geometry, and postoperative care can lead to implant failure. Age and gender should be considered during preoperative planning and postoperative care. Traditional Polyethylene bearing surfaces are suitable for older patients. Patients should receive counselling, informed about implant options, and given weight bearing instructions.
References
Long, P. H. (2008). Medical devices in orthopedic applications. Toxicologic pathology, 36(1), 85-91. DOI: https://doi.org/10.1177/0192623307310951
Priyanka. (2024, February 20). Orthopaedic Devices: Shaping the Future of Medicine. https://www.kingsresearch.com/blog/orthopedic-devices-shaping-the-future-of-medicine
Lin, J., Ge, J., Gong, J., Hong, H., & Jiang, C. (2022). Application of Digital Orthopedic Technology in Orthopedic Trauma. Computational and mathematical methods in medicine, 2022, 3157107. https://doi.org/10.1155/2022/3157107 DOI: https://doi.org/10.1155/2022/3157107
Orthopedic Medical Devices, Next generation of safety and reliability. (n.d.). TUV SUD.Retrived from https://www.tuvsud.com/en-in/industries/healthcare-and-medical-devices/medical-devices-and-ivd/orthopedic-medical-devices.
Orthopedic Devices Market Size, Share, Trends and Revenue Forecast [Latest]. (n.d.). Markets and Markets. https://www.marketsandmarkets.com/Market-Reports/orthopedic-device-280.html
Navarro, M., Michiardi, A., Castaño, O., & Planell, J. (2008). Biomaterials in orthopaedics. Journal of the Royal Society Interface, 5(27), 1137–1158. https://doi.org/10.1098/rsif.2008.0151 DOI: https://doi.org/10.1098/rsif.2008.0151
Hallab, N. J., & Jacobs, J. J. (2020). Orthopedic applications. In Biomaterials science (pp. 1079-1118). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-816137-1.00070-2
Jin, W., & Chu, P. K. (2019). Orthopedic implants. Encyclopedia of biomedical engineering, 1(3), 425-439. DOI: https://doi.org/10.1016/B978-0-12-801238-3.10999-7
Kalaiselvan V, Tripathi SK, Prakash J. Materiovigilance Programme of India: A scheme to assure cardiovascular devices safety surveillance. Indian Heart Journal. 2020;72(4):316-318. doi:10.1016/j.ihj.2020.06.009 DOI: https://doi.org/10.1016/j.ihj.2020.06.009
Kalaiselvan, V., Arora, S., & Raghuvanshi, R. S. (2023). Safety monitoring of orthopaedic implants under the Materiovigilance programme of India–A current perspective. Journal of Orthopaedic Reports, 2(2), 100145. DOI: https://doi.org/10.1016/j.jorep.2023.100145
Bandopadhyay, S., Bandyopadhyay, N., Ahmed, S., Yadav, V., & Tekade, R. K. (2019). Current research perspectives of orthopedic implant materials. Biomaterials and Bionanotechnology, 337-374. DOI: https://doi.org/10.1016/B978-0-12-814427-5.00010-X
Jones, L. C., Topoleski, L. T., & Tsao, A. K. (2017). Biomaterials in orthopaedic implants. In Mechanical testing of orthopaedic implants (pp. 17-32). Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-08-100286-5.00002-0
Tree, N. (n.d.). Orthopedic Implants: What is It & their Types? | Meril Life. Meril Life. https://www.merillife.com/blog/medtech/3-types-of-orthopedic-implants-you-need-to-know-before-undergoing-surgery
Szczęsny, G., Kopec, M., Politis, D. J., Kowalewski, Z. L., Łazarski, A., & Szolc, T. (2022). A review on biomaterials for orthopaedic surgery and traumatology: from past to present. Materials, 15(10), 3622.
Nag, S., & Banerjee, R. (2012). Fundamentals of medical implant materials. In Materials for medical devices (pp. 6-17). ASM International. DOI: https://doi.org/10.31399/asm.hb.v23.a0005682
Kim, T., See, C. W., Li, X., & Zhu, D. (2020). Orthopedic implants and devices for bone fractures and defects: Past, present and perspective. Engineered Regeneration, 1, 6-18. DOI: https://doi.org/10.1016/j.engreg.2020.05.003
Ratner, B. D. (Ed.). (2004). Biomaterials science: an introduction to materials in medicine. Academic press.
Haglin, J. M., Eltorai, A. E., Gil, J. A., Marcaccio, S. E., Botero‐Hincapie, J., & Daniels, A. H. (2016). Patient‐specific orthopaedic implants. Orthopaedic surgery, 8(4), 417-424. DOI: https://doi.org/10.1111/os.12282
Abdalla, S. S., Katas, H., Azmi, F., & Busra, M. F. M. (2020). Antibacterial and anti-biofilm biosynthesised silver and gold nanoparticles for medical applications: Mechanism of action, toxicity and current status. Current drug delivery, 17(2), 88-100. DOI: https://doi.org/10.2174/1567201817666191227094334
Szczęsny, G., Kopec, M., Politis, D. J., Kowalewski, Z. L., Łazarski, A., & Szolc, T. (2022). A review on biomaterials for orthopaedic surgery and traumatology: from past to present. Materials, 15(10), 3622. DOI: https://doi.org/10.3390/ma15103622
Lianying, S., & Sikang, X. (2010). Statistic analysis of 1900 adverse events of medical device reports. Zhongguo yi Liao qi xie za zhi= Chinese Journal of Medical Instrumentation, 34(1), 53-56.
Dargel, J., Oppermann, J., Brüggemann, G. P., & Eysel, P. (2014). Dislocation following total hip replacement. Deutsches Ärzteblatt International, 111(51-52), 884. DOI: https://doi.org/10.3238/arztebl.2014.0884
Bellova, P., Pablik, J., Stiehler, M., Dragu, A., & Lützner, J. (2021). Large soft-tissue mass formation after revision total knee arthroplasty: an unusual case of adverse reaction to metal debris and review of the literature. Arthroplasty Today, 9, 122-128. DOI: https://doi.org/10.1016/j.artd.2021.05.001
Chen, J., Akoh, C. C., Kadakia, R., Somerson, J. S., Easley, M. E., Adams, S. B., ... & Nunley, J. A. (2021). Analysis of 408 total ankle arthroplasty adverse events reported to the US Food and Drug Administration from 2015 to 2018. Foot & Ankle Specialist, 14(5), 393-400. DOI: https://doi.org/10.1177/1938640020919538
Kurtz, S. M., Ong, K. L., Schmier, J., Mowat, F., Saleh, K., Dybvik, E., ... & Lau, E. (2007). Future clinical and economic impact of revision total hip and knee arthroplasty. JBJS, 89(suppl_3), 144-151. DOI: https://doi.org/10.2106/JBJS.G.00587
Sansone, V., Pagani, D., & Melato, M. (2013). The effects on bone cells of metal ions released from orthopaedic implants. A review. Clinical Cases in Mineral and Bone Metabolism, 10(1), 34. DOI: https://doi.org/10.11138/ccmbm/2013.10.1.034
Matar, H. E., Porter, P. J., & Porter, M. L. (2021). Metal allergy in primary and revision total knee arthroplasty. Bone & Joint Open, 2(10), 785–795. https://doi.org/10.1302/2633-1462.210.bjo-2021-0098.r1 DOI: https://doi.org/10.1302/2633-1462.210.BJO-2021-0098.R1
Amaradeep, G., Prakah, S., & Manjappa, C. N. (2017). Surgical site infections in orthopedic implant surgery and its risk factors: A prospective study in teaching hospital. Int J Orthop Sci, 3(3), 169-172. DOI: https://doi.org/10.22271/ortho.2017.v3.i3c.28
Triantafyllidis, G., Kazantzis, A., & Karageorgiou, K. (2007). Premature fracture of a stainless steel 316L orthopaedic plate implant by alternative episodes of fatigue and cleavage decoherence. Engineering Failure Analysis, 14(7), 1346–1350. https://doi.org/10.1016/j.engfailanal.2006.11.010 DOI: https://doi.org/10.1016/j.engfailanal.2006.11.010
KM, O., Omotola, O. E., Bulus, B. B., Alo, M., & Onuoha, C. E. O. Orthopaedic Implant Failure. Sur Cas Stud Op Acc J. 2 (3)-2019. SCSOAJ. MS. ID, 139. DOI: https://doi.org/10.32474/SCSOAJ.2019.02.000139
Wienroth, M., McCormack, P., & Joyce, T. J. (2014). Precaution, governance and the failure of medical implants: the ASR (TM) hip in the UK. Life Sciences, Society and Policy, 10, 1-16. DOI: https://doi.org/10.1186/s40504-014-0019-2
Donnelley, C. A., Devlin, V. J., Harris, M. B., Poggie, R. A., Sanders, R. W., & Morshed, S. (2021). Regulation of orthopaedic devices: Future implications for research and innovation. OTA International, 4(2S), e101. DOI: https://doi.org/10.1097/OI9.0000000000000101
Colón, C. J. P., Molina-Vicenty, I. L., Frontera-Rodríguez, M., García-Ferré, A., Rivera, B. P., Cintrón-Vélez, G., & Frontera-Rodríguez, S. (2018). Muscle and Bone Mass Loss in the Elderly Population: Advances in diagnosis and treatment. Journal of Biomedicine (Sydney, NSW), 3, 40. DOI: https://doi.org/10.7150/jbm.23390
Clark, D., Nakamura, M., Miclau, T., & Marcucio, R. (2017). Effects of aging on fracture healing. Current osteoporosis reports, 15, 601-608. DOI: https://doi.org/10.1007/s11914-017-0413-9
Inam, S. M. (2014). An Audit of Implant Failure in Orthopedic Surgery. Journal of Pakistan Orthopaedic Association, 26(2), 05-09.
Symptoms of Hip or Knee Replacement Failure. (2024, March 13). University of Utah Health | University of Utah Health. https://healthcare.utah.edu/orthopaedics/specialties/joint-replacement/hip-knee-revision/replacement-failure-symptoms
Admin. (2023, December 28). Biodegradable Orthopedic Implants – A Sustainable Approach to Orthopedics. Siora Surgicals Private Limited. https://www.siiora.com/blogs/biodegradable-orthopedic-implants/
Uteshiya. (2024, April 16). The Most Common Causes of Implant Failure - Orthopedic Implants & Instruments Manufacturer/Suppliers- Uteshiya. Orthopedic Implants & Instruments Manufacturer/Suppliers- Uteshiya. https://www.uteshiyamedicare.com/the-most-common-causes-of-implant-failure/
Dmochowski, J. M., Royal, J. T., & Lourie, G. M. (2019). Could a titanium ulnar shortening plate trigger a metal allergy? A case report. Journal of Wrist Surgery, 8(06), 503-507. DOI: https://doi.org/10.1055/s-0039-1677742
Sicilia, A., Cuesta, S., Coma, G., Arregui, I., Guisasola, C., Ruiz, E., & Maestro, A. (2008). Titanium allergy in dental implant patients: a clinical study on 1500 consecutive patients. Clinical oral implants research, 19(8), 823-835. DOI: https://doi.org/10.1111/j.1600-0501.2008.01544.x
Hallab, N., Merritt, K., & Jacobs, J. J. (2001). Metal sensitivity in patients with orthopaedic implants. JBJS, 83(3), 428. DOI: https://doi.org/10.2106/00004623-200103000-00017
Lee, H. M., Kim, J. P., Chung, P. H., Kang, S., Kim, Y. S., & Go, B. S. (2018). Posterior dislocation following revision total knee replacement arthroplasty: a case report and literature analysis. European Journal of Orthopaedic Surgery & Traumatology, 28, 1641-1644. DOI: https://doi.org/10.1007/s00590-018-2232-9
Edwards, C., Counsell, A., Boulton, C., & Moran, C. G. (2008). Early infection after hip fracture surgery: risk factors, costs and outcome. The Journal of Bone & Joint Surgery British Volume, 90(6), 770-777. DOI: https://doi.org/10.1302/0301-620X.90B6.20194
Khan, M. S., Rehman, S., Ali, M. A., Sultan, B., & Sultan, S. (2008). Infection in orthopedic implant surgery, its risk factors and outcome. J Ayub Med Coll Abbottabad, 20(1), 23-5.
Pahlavan, S., Hegde, V., Bracey, D. N., Jennings, J. M., & Dennis, D. A. (2021). Bone Cement Hypersensitivity in Patients With a Painful Total Knee Arthroplasty: A Case Series of Revision Using Custom Cementless Implants. Arthroplasty Today, 11, 20-24. DOI: https://doi.org/10.1016/j.artd.2021.06.001
Ramesh, R., Sasi, A., Mohamed, S. C., & Joseph, S. P. (2024). “Compression Necrosis”–A Cause of Concern for Early Implant Failure? Case Report and Review of Literature. Clinical, Cosmetic and Investigational Dentistry, 43-52. DOI: https://doi.org/10.2147/CCIDE.S453798
Mohsin, F., Zubairi, M. B. A., Fatima, K., & Diwan, M. A. (2023). Metallic implant-related osteosarcoma. Radiology case reports, 18(3), 1311-1315. DOI: https://doi.org/10.1016/j.radcr.2023.01.004
Mathew, S. E., Malyavko, A., & Tabaie, S. (2022). Simultaneous Bilateral Proximal Femur Implant Failure: A Case Report. Cureus, 14(12). DOI: https://doi.org/10.7759/cureus.32543
Kiran, M., & Boscainos, P. J. (2015). Adverse reactions to metal debris in metal-on-polyethylene total hip arthroplasty using a titanium-molybdenum-zirconium-iron alloy stem. The Journal of arthroplasty, 30(2), 277-281. DOI: https://doi.org/10.1016/j.arth.2014.06.030
Cristofaro, C., Pinsker, E. B., Halai, F., Wolfstadt, J., Daniels, T. R., & Halai, M. (2023). Metal hypersensitivity in foot & ankle orthopaedic surgery: A systematic review. Journal of Clinical Orthopaedics and Trauma, 102249. DOI: https://doi.org/10.1016/j.jcot.2023.102249
Lardanchet, J. F., Taviaux, J., Arnalsteen, D., Gabrion, A., & Mertl, P. (2012). One-year prospective comparative study of three large-diameter metal-on-metal total hip prostheses: serum metal ion levels and clinical outcomes. Orthopaedics & Traumatology: Surgery & Research, 98(3), 265-274. DOI: https://doi.org/10.1016/j.otsr.2011.11.009
Rieker, C. B. (2016). Tribology of total hip arthroplasty prostheses: What an orthopaedic surgeon should know. EFORT open reviews, 1(2), 52-57. DOI: https://doi.org/10.1302/2058-5241.1.000004
Almaawi, A., Alabdullatif, F. S., Alabdulkarim, N., Benfaris, D., Alamari, N., & Alzuhair, A. (2021). Different Types of Bearing Surfaces in Primary Total Hip Arthroplasty: A Systematic Review. Health Sciences, 10(5), 153-167.
Gupta, A., Das, K., Bansal, K., Chhabra, H. S., & Arora, M. (2021). Should implant breakage be always considered as implant “Failure” in spine surgery: Analysis of two cases and literature review. Cureus, 13(5). DOI: https://doi.org/10.7759/cureus.15233
Ude, C. C., Esdaille, C. J., Ogueri, K. S., Kan, H. M., Laurencin, S. J., Nair, L. S., & Laurencin, C. T. (2021). The mechanism of metallosis after total hip arthroplasty. Regenerative engineering and translational medicine, 7(3), 247-261. DOI: https://doi.org/10.1007/s40883-021-00222-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Manvi Aggarwal, Arti Thakkar, Jyoti Sinha

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.