ORTHOPAEDIC IMPLANT: A COMPREHENSIVE STUDY OF ASSOCIATED RISK FACTORS

Authors

  • Manvi Aggarwal Department of Pharmacy, School of Health Sciences, Sushant University, Gurugram- 122003, Haryana, India
  • Arti Thakkar Pumas-AI. Inc., USA
  • Jyoti Sinha Department of Pharmacy, School of Health Sciences, Sushant University, Gurugram- 122003, Haryana, India

DOI:

https://doi.org/10.29121/shodhkosh.v5.i1.2024.4886

Keywords:

Adverse Event, Metallosis, Meta-Analysis, Medical Device, Orthopaedic Implant, Surgical Site Infection

Abstract [English]

Introduction-Orthopaedic technology plays a significant role, including anything from entirely spinal systems to joint restoration. These devices are often composed of metal, ceramic, or polymer. Orthopaedic surgery has helped millions of patients by restoring their mobility, relieving their pain, and ultimately improving their quality of life. But their high risk of adverse effects such as device breakage, surgical site infections, discomfort, edema, and so forth limited their utilization. So, the primary objective of the current study is to estimate the prevalence of adverse events after orthopaedic implantation.
Methodology- A meta-analysis was conducted on adverse effects of orthopaedic implantation, examining 151 case studies started from year 2000 to 2022, using the Medline, Embace, and Google Scholar databases. The review focused on factors like implant type, patient age, gender, reaction start time, adverse events, clinical presentation, and results.
Result and Discussion- Research verified that male patients experience more adverse effects from orthopaedic implants due to increased BMI, which strains the implants. Lower limb surgery is more common due to weight-bearing implants. Common adverse reactions include metallosis, fracture, and infection. An accumulation of metal ions in the bloodstream causes the implant to become loose, induce inflammatory responses, and cause chronic pain around the implant site.
Conclusion- Factors like implant quality, selection, fixation, fracture geometry, and postoperative care can lead to implant failure. Age and gender should be considered during preoperative planning and postoperative care. Traditional Polyethylene bearing surfaces are suitable for older patients. Patients should receive counselling, informed about implant options, and given weight bearing instructions.

References

Long, P. H. (2008). Medical devices in orthopedic applications. Toxicologic pathology, 36(1), 85-91. DOI: https://doi.org/10.1177/0192623307310951

Priyanka. (2024, February 20). Orthopaedic Devices: Shaping the Future of Medicine. https://www.kingsresearch.com/blog/orthopedic-devices-shaping-the-future-of-medicine

Lin, J., Ge, J., Gong, J., Hong, H., & Jiang, C. (2022). Application of Digital Orthopedic Technology in Orthopedic Trauma. Computational and mathematical methods in medicine, 2022, 3157107. https://doi.org/10.1155/2022/3157107 DOI: https://doi.org/10.1155/2022/3157107

Orthopedic Medical Devices, Next generation of safety and reliability. (n.d.). TUV SUD.Retrived from https://www.tuvsud.com/en-in/industries/healthcare-and-medical-devices/medical-devices-and-ivd/orthopedic-medical-devices.

Orthopedic Devices Market Size, Share, Trends and Revenue Forecast [Latest]. (n.d.). Markets and Markets. https://www.marketsandmarkets.com/Market-Reports/orthopedic-device-280.html

Navarro, M., Michiardi, A., Castaño, O., & Planell, J. (2008). Biomaterials in orthopaedics. Journal of the Royal Society Interface, 5(27), 1137–1158. https://doi.org/10.1098/rsif.2008.0151 DOI: https://doi.org/10.1098/rsif.2008.0151

Hallab, N. J., & Jacobs, J. J. (2020). Orthopedic applications. In Biomaterials science (pp. 1079-1118). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-816137-1.00070-2

Jin, W., & Chu, P. K. (2019). Orthopedic implants. Encyclopedia of biomedical engineering, 1(3), 425-439. DOI: https://doi.org/10.1016/B978-0-12-801238-3.10999-7

Kalaiselvan V, Tripathi SK, Prakash J. Materiovigilance Programme of India: A scheme to assure cardiovascular devices safety surveillance. Indian Heart Journal. 2020;72(4):316-318. doi:10.1016/j.ihj.2020.06.009 DOI: https://doi.org/10.1016/j.ihj.2020.06.009

Kalaiselvan, V., Arora, S., & Raghuvanshi, R. S. (2023). Safety monitoring of orthopaedic implants under the Materiovigilance programme of India–A current perspective. Journal of Orthopaedic Reports, 2(2), 100145. DOI: https://doi.org/10.1016/j.jorep.2023.100145

Bandopadhyay, S., Bandyopadhyay, N., Ahmed, S., Yadav, V., & Tekade, R. K. (2019). Current research perspectives of orthopedic implant materials. Biomaterials and Bionanotechnology, 337-374. DOI: https://doi.org/10.1016/B978-0-12-814427-5.00010-X

Jones, L. C., Topoleski, L. T., & Tsao, A. K. (2017). Biomaterials in orthopaedic implants. In Mechanical testing of orthopaedic implants (pp. 17-32). Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-08-100286-5.00002-0

Tree, N. (n.d.). Orthopedic Implants: What is It & their Types? | Meril Life. Meril Life. https://www.merillife.com/blog/medtech/3-types-of-orthopedic-implants-you-need-to-know-before-undergoing-surgery

Szczęsny, G., Kopec, M., Politis, D. J., Kowalewski, Z. L., Łazarski, A., & Szolc, T. (2022). A review on biomaterials for orthopaedic surgery and traumatology: from past to present. Materials, 15(10), 3622.

Nag, S., & Banerjee, R. (2012). Fundamentals of medical implant materials. In Materials for medical devices (pp. 6-17). ASM International. DOI: https://doi.org/10.31399/asm.hb.v23.a0005682

Kim, T., See, C. W., Li, X., & Zhu, D. (2020). Orthopedic implants and devices for bone fractures and defects: Past, present and perspective. Engineered Regeneration, 1, 6-18. DOI: https://doi.org/10.1016/j.engreg.2020.05.003

Ratner, B. D. (Ed.). (2004). Biomaterials science: an introduction to materials in medicine. Academic press.

Haglin, J. M., Eltorai, A. E., Gil, J. A., Marcaccio, S. E., Botero‐Hincapie, J., & Daniels, A. H. (2016). Patient‐specific orthopaedic implants. Orthopaedic surgery, 8(4), 417-424. DOI: https://doi.org/10.1111/os.12282

Abdalla, S. S., Katas, H., Azmi, F., & Busra, M. F. M. (2020). Antibacterial and anti-biofilm biosynthesised silver and gold nanoparticles for medical applications: Mechanism of action, toxicity and current status. Current drug delivery, 17(2), 88-100. DOI: https://doi.org/10.2174/1567201817666191227094334

Szczęsny, G., Kopec, M., Politis, D. J., Kowalewski, Z. L., Łazarski, A., & Szolc, T. (2022). A review on biomaterials for orthopaedic surgery and traumatology: from past to present. Materials, 15(10), 3622. DOI: https://doi.org/10.3390/ma15103622

Lianying, S., & Sikang, X. (2010). Statistic analysis of 1900 adverse events of medical device reports. Zhongguo yi Liao qi xie za zhi= Chinese Journal of Medical Instrumentation, 34(1), 53-56.

Dargel, J., Oppermann, J., Brüggemann, G. P., & Eysel, P. (2014). Dislocation following total hip replacement. Deutsches Ärzteblatt International, 111(51-52), 884. DOI: https://doi.org/10.3238/arztebl.2014.0884

Bellova, P., Pablik, J., Stiehler, M., Dragu, A., & Lützner, J. (2021). Large soft-tissue mass formation after revision total knee arthroplasty: an unusual case of adverse reaction to metal debris and review of the literature. Arthroplasty Today, 9, 122-128. DOI: https://doi.org/10.1016/j.artd.2021.05.001

Chen, J., Akoh, C. C., Kadakia, R., Somerson, J. S., Easley, M. E., Adams, S. B., ... & Nunley, J. A. (2021). Analysis of 408 total ankle arthroplasty adverse events reported to the US Food and Drug Administration from 2015 to 2018. Foot & Ankle Specialist, 14(5), 393-400. DOI: https://doi.org/10.1177/1938640020919538

Kurtz, S. M., Ong, K. L., Schmier, J., Mowat, F., Saleh, K., Dybvik, E., ... & Lau, E. (2007). Future clinical and economic impact of revision total hip and knee arthroplasty. JBJS, 89(suppl_3), 144-151. DOI: https://doi.org/10.2106/JBJS.G.00587

Sansone, V., Pagani, D., & Melato, M. (2013). The effects on bone cells of metal ions released from orthopaedic implants. A review. Clinical Cases in Mineral and Bone Metabolism, 10(1), 34. DOI: https://doi.org/10.11138/ccmbm/2013.10.1.034

Matar, H. E., Porter, P. J., & Porter, M. L. (2021). Metal allergy in primary and revision total knee arthroplasty. Bone & Joint Open, 2(10), 785–795. https://doi.org/10.1302/2633-1462.210.bjo-2021-0098.r1 DOI: https://doi.org/10.1302/2633-1462.210.BJO-2021-0098.R1

Amaradeep, G., Prakah, S., & Manjappa, C. N. (2017). Surgical site infections in orthopedic implant surgery and its risk factors: A prospective study in teaching hospital. Int J Orthop Sci, 3(3), 169-172. DOI: https://doi.org/10.22271/ortho.2017.v3.i3c.28

Triantafyllidis, G., Kazantzis, A., & Karageorgiou, K. (2007). Premature fracture of a stainless steel 316L orthopaedic plate implant by alternative episodes of fatigue and cleavage decoherence. Engineering Failure Analysis, 14(7), 1346–1350. https://doi.org/10.1016/j.engfailanal.2006.11.010 DOI: https://doi.org/10.1016/j.engfailanal.2006.11.010

KM, O., Omotola, O. E., Bulus, B. B., Alo, M., & Onuoha, C. E. O. Orthopaedic Implant Failure. Sur Cas Stud Op Acc J. 2 (3)-2019. SCSOAJ. MS. ID, 139. DOI: https://doi.org/10.32474/SCSOAJ.2019.02.000139

Wienroth, M., McCormack, P., & Joyce, T. J. (2014). Precaution, governance and the failure of medical implants: the ASR (TM) hip in the UK. Life Sciences, Society and Policy, 10, 1-16. DOI: https://doi.org/10.1186/s40504-014-0019-2

Donnelley, C. A., Devlin, V. J., Harris, M. B., Poggie, R. A., Sanders, R. W., & Morshed, S. (2021). Regulation of orthopaedic devices: Future implications for research and innovation. OTA International, 4(2S), e101. DOI: https://doi.org/10.1097/OI9.0000000000000101

Colón, C. J. P., Molina-Vicenty, I. L., Frontera-Rodríguez, M., García-Ferré, A., Rivera, B. P., Cintrón-Vélez, G., & Frontera-Rodríguez, S. (2018). Muscle and Bone Mass Loss in the Elderly Population: Advances in diagnosis and treatment. Journal of Biomedicine (Sydney, NSW), 3, 40. DOI: https://doi.org/10.7150/jbm.23390

Clark, D., Nakamura, M., Miclau, T., & Marcucio, R. (2017). Effects of aging on fracture healing. Current osteoporosis reports, 15, 601-608. DOI: https://doi.org/10.1007/s11914-017-0413-9

Inam, S. M. (2014). An Audit of Implant Failure in Orthopedic Surgery. Journal of Pakistan Orthopaedic Association, 26(2), 05-09.

Symptoms of Hip or Knee Replacement Failure. (2024, March 13). University of Utah Health | University of Utah Health. https://healthcare.utah.edu/orthopaedics/specialties/joint-replacement/hip-knee-revision/replacement-failure-symptoms

Admin. (2023, December 28). Biodegradable Orthopedic Implants – A Sustainable Approach to Orthopedics. Siora Surgicals Private Limited. https://www.siiora.com/blogs/biodegradable-orthopedic-implants/

Uteshiya. (2024, April 16). The Most Common Causes of Implant Failure - Orthopedic Implants & Instruments Manufacturer/Suppliers- Uteshiya. Orthopedic Implants & Instruments Manufacturer/Suppliers- Uteshiya. https://www.uteshiyamedicare.com/the-most-common-causes-of-implant-failure/

Dmochowski, J. M., Royal, J. T., & Lourie, G. M. (2019). Could a titanium ulnar shortening plate trigger a metal allergy? A case report. Journal of Wrist Surgery, 8(06), 503-507. DOI: https://doi.org/10.1055/s-0039-1677742

Sicilia, A., Cuesta, S., Coma, G., Arregui, I., Guisasola, C., Ruiz, E., & Maestro, A. (2008). Titanium allergy in dental implant patients: a clinical study on 1500 consecutive patients. Clinical oral implants research, 19(8), 823-835. DOI: https://doi.org/10.1111/j.1600-0501.2008.01544.x

Hallab, N., Merritt, K., & Jacobs, J. J. (2001). Metal sensitivity in patients with orthopaedic implants. JBJS, 83(3), 428. DOI: https://doi.org/10.2106/00004623-200103000-00017

Lee, H. M., Kim, J. P., Chung, P. H., Kang, S., Kim, Y. S., & Go, B. S. (2018). Posterior dislocation following revision total knee replacement arthroplasty: a case report and literature analysis. European Journal of Orthopaedic Surgery & Traumatology, 28, 1641-1644. DOI: https://doi.org/10.1007/s00590-018-2232-9

Edwards, C., Counsell, A., Boulton, C., & Moran, C. G. (2008). Early infection after hip fracture surgery: risk factors, costs and outcome. The Journal of Bone & Joint Surgery British Volume, 90(6), 770-777. DOI: https://doi.org/10.1302/0301-620X.90B6.20194

Khan, M. S., Rehman, S., Ali, M. A., Sultan, B., & Sultan, S. (2008). Infection in orthopedic implant surgery, its risk factors and outcome. J Ayub Med Coll Abbottabad, 20(1), 23-5.

Pahlavan, S., Hegde, V., Bracey, D. N., Jennings, J. M., & Dennis, D. A. (2021). Bone Cement Hypersensitivity in Patients With a Painful Total Knee Arthroplasty: A Case Series of Revision Using Custom Cementless Implants. Arthroplasty Today, 11, 20-24. DOI: https://doi.org/10.1016/j.artd.2021.06.001

Ramesh, R., Sasi, A., Mohamed, S. C., & Joseph, S. P. (2024). “Compression Necrosis”–A Cause of Concern for Early Implant Failure? Case Report and Review of Literature. Clinical, Cosmetic and Investigational Dentistry, 43-52. DOI: https://doi.org/10.2147/CCIDE.S453798

Mohsin, F., Zubairi, M. B. A., Fatima, K., & Diwan, M. A. (2023). Metallic implant-related osteosarcoma. Radiology case reports, 18(3), 1311-1315. DOI: https://doi.org/10.1016/j.radcr.2023.01.004

Mathew, S. E., Malyavko, A., & Tabaie, S. (2022). Simultaneous Bilateral Proximal Femur Implant Failure: A Case Report. Cureus, 14(12). DOI: https://doi.org/10.7759/cureus.32543

Kiran, M., & Boscainos, P. J. (2015). Adverse reactions to metal debris in metal-on-polyethylene total hip arthroplasty using a titanium-molybdenum-zirconium-iron alloy stem. The Journal of arthroplasty, 30(2), 277-281. DOI: https://doi.org/10.1016/j.arth.2014.06.030

Cristofaro, C., Pinsker, E. B., Halai, F., Wolfstadt, J., Daniels, T. R., & Halai, M. (2023). Metal hypersensitivity in foot & ankle orthopaedic surgery: A systematic review. Journal of Clinical Orthopaedics and Trauma, 102249. DOI: https://doi.org/10.1016/j.jcot.2023.102249

Lardanchet, J. F., Taviaux, J., Arnalsteen, D., Gabrion, A., & Mertl, P. (2012). One-year prospective comparative study of three large-diameter metal-on-metal total hip prostheses: serum metal ion levels and clinical outcomes. Orthopaedics & Traumatology: Surgery & Research, 98(3), 265-274. DOI: https://doi.org/10.1016/j.otsr.2011.11.009

Rieker, C. B. (2016). Tribology of total hip arthroplasty prostheses: What an orthopaedic surgeon should know. EFORT open reviews, 1(2), 52-57. DOI: https://doi.org/10.1302/2058-5241.1.000004

Almaawi, A., Alabdullatif, F. S., Alabdulkarim, N., Benfaris, D., Alamari, N., & Alzuhair, A. (2021). Different Types of Bearing Surfaces in Primary Total Hip Arthroplasty: A Systematic Review. Health Sciences, 10(5), 153-167.

Gupta, A., Das, K., Bansal, K., Chhabra, H. S., & Arora, M. (2021). Should implant breakage be always considered as implant “Failure” in spine surgery: Analysis of two cases and literature review. Cureus, 13(5). DOI: https://doi.org/10.7759/cureus.15233

Ude, C. C., Esdaille, C. J., Ogueri, K. S., Kan, H. M., Laurencin, S. J., Nair, L. S., & Laurencin, C. T. (2021). The mechanism of metallosis after total hip arthroplasty. Regenerative engineering and translational medicine, 7(3), 247-261. DOI: https://doi.org/10.1007/s40883-021-00222-1

Downloads

Published

2024-06-30

How to Cite

Aggarwal, M., Thakkar, A., & Sinha, J. (2024). ORTHOPAEDIC IMPLANT: A COMPREHENSIVE STUDY OF ASSOCIATED RISK FACTORS. ShodhKosh: Journal of Visual and Performing Arts, 5(1), 2013–2023. https://doi.org/10.29121/shodhkosh.v5.i1.2024.4886