ADVANCES IN MELANOMA DETECTION: A COMPREHENSIVE REVIEW OF EMERGING TECHNOLOGIES AND TECHNIQUES

Authors

  • Vinay S. Nalawade Research Scholar, Department of Computer Engineering, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan, India.
  • Dr. Shailesh Kumar Associate Professor, Department of Computer Engineering, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan, India.
  • Dr.Shrinivas T. Shirkande Principal & Associate Professor, S B Patil College of Engineering, Indapur, Pune, Maharashtra, India.

DOI:

https://doi.org/10.29121/shodhkosh.v5.i6.2024.4824

Keywords:

Melanoma Detection, Artificial Intelligence, Imaging Technologies, Deep Learning, Biomarkers

Abstract [English]

Melanoma detection has come a long way, mostly thanks to breakthroughs in image technologies and machine learning techniques that aim to make diagnoses more accurate and improve patient results. Traditional techniques like dermoscopy and biopsy are still very important. However, newer technologies like multispectral images and computer-assisted analysis have made it much easier to tell the difference between normal and cancerous tumours early on. This review talks about how melanoma detection tools have changed over time and where they are now. It also talks about how artificial intelligence (AI) is being used in dermatology. Some new developments in high-resolution imaging, like confocal microscopy and optical coherence tomography, offer non-invasive options for deeper tissue analysis and real-time identification of cancerous cells, which can be very important for starting treatment early. Also, improvements in teledermatology have made it easier to do screenings from afar, making it easier for more people to get expert care and second views, which is especially helpful in areas that don't have enough resources. Melanoma identification has been changed forever by the use of deep learning models that can look at pictures of skin lesions with the same level of accuracy as doctors. These AI systems are trained on very large datasets and are being used more and more to help doctors make decisions, which could help cut down on medical mistakes and bias. Not only that, but AI-powered tools also show a lot of promise for keeping track of how lesions change over time, which is an important part of watching for melanoma. Also, genetic markers and biomarkers have become very useful for finding people who are at risk, which allows for proactive control and personalised treatment plans.

References

Parikh, R.B.; Teeple, S.; Navathe, A.S. Addressing Bias in Artificial Intelligence in Health Care. JAMA 2019, 322, 2377–2378. DOI: https://doi.org/10.1001/jama.2019.18058

Dunn, B.K.; Woloshin, S.; Xie, H.; Kramer, B.S. Cancer overdiagnosis: A challenge in the era of screening. J. Natl. Cancer Cent. 2022, 2, 235–242. DOI: https://doi.org/10.1016/j.jncc.2022.08.005

Whiteman, D.C.; Olsen, C.M.; MacGregor, S.; Law, M.H.; Thompson, B.; Dusingize, J.C.; Green, A.C.; Neale, R.E.; Pandeya, N. The effect of screening on melanoma incidence and biopsy rates. Br. J. Dermatol. 2022, 187, 515–522. DOI: https://doi.org/10.1111/bjd.21649

Muzumdar, S.; Lin, G.; Kerr, P.; Grant-Kels, J.M. Evidence concerning the accusation that melanoma is overdiagnosed. J. Am. Acad. Dermatol. 2021, 85, 841–846. DOI: https://doi.org/10.1016/j.jaad.2021.06.010

Kurtansky, N.R.; Dusza, S.W.; Halpern, A.C.; Hartman, R.I.; Geller, A.C.; Marghoob, A.A.; Rotemberg, V.M.; Marchetti, M.A. An Epidemiologic Analysis of Melanoma Overdiagnosis in the United States 1975–2017. J. Investig. Dermatol. 2022, 142, 1804–1811.e6. DOI: https://doi.org/10.1016/j.jid.2021.12.003

Garrison, Z.R.; Hall, C.M.; Fey, R.M.; Clister, T.; Khan, N.; Nichols, R.; Kulkarni, R.P. Advances in Early Detection of Melanoma and the Future of At-Home Testing. Life 2023, 13, 974. DOI: https://doi.org/10.3390/life13040974

Gosman, L.M.; Țăpoi, D.-A.; Costache, M. Cutaneous Melanoma: A Review of Multifactorial Pathogenesis, Immunohistochemistry, and Emerging Biomarkers for Early Detection and Management. Int. J. Mol. Sci. 2023, 24, 15881. DOI: https://doi.org/10.3390/ijms242115881

Laskar, R.; Ferreiro-Iglesias, A.; Bishop, D.T.; Iles, M.M.; Kanetsky, P.A.; Armstrong, B.K.; Law, M.H.; Goldstein, A.M.; Aitken, J.F.; Giles, G.G.; et al. Risk factors for melanoma by anatomical site: An evaluation of aetiological heterogeneity. Br. J. Dermatol. 2021, 184, 1085–1093. DOI: https://doi.org/10.1111/bjd.19705

Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Barsouk, A. Epidemiology of Melanoma. Med. Sci. 2021, 9, 63. DOI: https://doi.org/10.3390/medsci9040063

Zambrano-Román, M.; Padilla-Gutiérrez, J.R.; Valle, Y.; Muñoz-Valle, J.F.; Valdés-Alvarado, E. Non-Melanoma Skin Cancer: A Genetic Update and Future Perspectives. Cancers 2022, 14, 2371. DOI: https://doi.org/10.3390/cancers14102371

Funchain, P.; Ni, Y.; Heald, B.; Bungo, B.; Arbesman, M.; Behera, T.R.; McCormick, S.; Song, J.M.; Kennedy, L.B.; Kennedy, L.B.; et al. Germline cancer susceptibility in individuals with melanoma. J. Am. Acad. Dermatol. 2024, 91, 267. DOI: https://doi.org/10.1016/j.jaad.2023.11.070

Beigi, Y.Z.; Lanjanian, H.; Fayazi, R.; Salimi, M.; Hoseyni, B.H.M.; Noroozizadeh, M.H.; Masoudi-Nejad, A. Heterogeneity and molecular landscape of melanoma: Implications for targeted therapy. Mol. Biomed. 2024, 5, 17. DOI: https://doi.org/10.1186/s43556-024-00182-2

Isaak, A.J.; Clements, G.R.; Buenaventura, R.G.M.; Merlino, G.; Yu, Y. Development of Personalized Strategies for Precisely Battling Malignant Melanoma. Int. J. Mol. Sci. 2024, 25, 5023. DOI: https://doi.org/10.3390/ijms25095023

Tehranian, C.; Fankhauser, L.; Harter, P.N.; Ratcliffe, C.D.H.; Zeiner, P.S.; Messmer, J.M.; Hoffmann, D.C.; Frey, K.; Westphal, D.; Ronellenfitsch, M.W.; et al. The PI3K/Akt/mTOR pathway as a preventive target in melanoma brain metastasis. Neuro Oncol. 2022, 24, 213–225. DOI: https://doi.org/10.1093/neuonc/noab159

Geng, Y.; Geng, Y.; Liu, X.; Chai, Q.; Li, X.; Ren, T.; Shang, Q. PI3K/AKT/mTOR pathway-derived risk score exhibits correlation with immune infiltration in uveal melanoma patients. Front. Oncol. 2023, 13, 1167930. DOI: https://doi.org/10.3389/fonc.2023.1167930

Popova, N.V.; Jücker, M. The Role of mTOR Signaling as a Therapeutic Target in Cancer. Int. J. Mol. Sci. 2021, 22, 1743. DOI: https://doi.org/10.3390/ijms22041743

R. Golcha, P. Khobragade and A. Talekar, "Multimodal Deep Learning for Advanced Health Monitoring A Comprehensive Approach for Enhanced Precision and Early Disease Detection," 2024 5th International Conference on Innovative Trends in Information Technology (ICITIIT), Kottayam, India, 2024, pp. 1-6, doi: 10.1109/ICITIIT61487.2024.10580622. DOI: https://doi.org/10.1109/ICITIIT61487.2024.10580622

Peng, X.; Huang, X.; Lulu, T.B.; Jia, W.; Zhang, S.; Cohen, L.; Huang, S.; Fan, J.; Chen, X.; Liu, S.; et al. A novel pan-PI3K inhibitor KTC1101 synergizes with anti-PD-1 therapy by targeting tumor suppression and immune activation. Mol. Cancer 2024, 23, 54. DOI: https://doi.org/10.1186/s12943-024-01978-0

Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. DOI: https://doi.org/10.1186/s12943-023-01827-6

Lam, G.T.; Prabhakaran, S.; Sorvina, A.; Martini, C.; Ung, B.S.Y.; Karageorgos, L.; Hickey, S.M.; Lazniewska, J.; Johnson, I.R.D.; Williams, D.B.; et al. Pitfalls in cutaneous melanoma diagnosis and the need for new reliable markers. Mol. Diagn. Ther. 2023, 27, 49–60. DOI: https://doi.org/10.1007/s40291-022-00628-9

Gualco, M. Histopathological Examination: The Keystone of Treatment of Melanoma. In Current Management of Melanoma; Cafiero, F., De Cian, F., Eds.; Springer: Cham, Switzerland, 2021; pp. 27–37. ISBN 978-3-030-45347-3. DOI: https://doi.org/10.1007/978-3-030-45347-3_4

Proietti, I.; Skroza, N.; Michelini, S.; Mambrin, A.; Balduzzi, V.; Bernardini, N.; Marchesiello, A.; Tolino, E.; Volpe, S.; Maddalena, P.; et al. BRAF inhibitors: Molecular targeting and immunomodulatory actions. Cancers 2020, 12, 1823. DOI: https://doi.org/10.3390/cancers12071823

Ziogas, D.C.; Theocharopoulos, C.; Lialios, P.P.; Foteinou, D.; Koumprentziotis, I.A.; Xynos, G.; Gogas, H. Beyond CTLA-4 and PD-1 inhibition: Novel immune checkpoint molecules for melanoma treatment. Cancers 2023, 15, 2718. DOI: https://doi.org/10.3390/cancers15102718

Gide, T.N.; Wilmott, J.S.; Scolyer, R.A.; Long, G.V. Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma. Clin. Cancer Res. 2018, 24, 1260–1270. DOI: https://doi.org/10.1158/1078-0432.CCR-17-2267

Prkačin, I.; Mokos, M.; Ferara, N.; Šitum, M. Melanoma’s New Frontier: Exploring the Latest Advances in Blood-Based Biomarkers for Melanoma. Cancers 2024, 16, 4219 DOI: https://doi.org/10.3390/cancers16244219

Downloads

Published

2024-06-30

How to Cite

Nalawade, V. S., Kumar, S., & Shirkande, S. T. (2024). ADVANCES IN MELANOMA DETECTION: A COMPREHENSIVE REVIEW OF EMERGING TECHNOLOGIES AND TECHNIQUES. ShodhKosh: Journal of Visual and Performing Arts, 5(6), 1497–1505. https://doi.org/10.29121/shodhkosh.v5.i6.2024.4824