STATISTICAL ANALYSIS AND ASSESSMENT OF FUNGAL-INDUCED DETERIORATION IN SELECTED MONUMENTS OF PRAYAGRAJ

Authors

  • Rahul Soni Research Scholar, Department of Botany, CMP College, University of Allahabad, Prayagraj, UP, India
  • Ashish kumar Research Scholar, Department of Biotechnology, Motilal Nehru National Institue of Technology Allahabad, Prayagraj, UP, India
  • Prof. Amita Pandey Professor, Department of Botany, CMP College, University of Allahabad, Prayagraj, UP, India

DOI:

https://doi.org/10.29121/shodhkosh.v4.i2.2023.4758

Keywords:

Fungal Deterioration, Biodeterioration, Historical Monuments, Prayagraj, Conservation Strategies

Abstract [English]

This study examines fungal-induced deterioration of selected historical monuments in Prayagraj, India, with a focus on Aspergillus niger, Penicillium chrysogenum, and Fusarium species. Five significant monuments had surface samples taken, which were then examined using morphological and molecular identification techniques. High humidity and fungal proliferation were found to be strongly correlated by statistical studies such as ANOVA, Pearson correlation, and diversity indices; Khusro Bagh had the highest fungal diversity. Biogenic mineral dissolution and structural degradation were confirmed by Fourier Transform Infrared Spectroscopy (FTIR) and Environmental Scanning Electron Microscopy (ESEM). High humidity and fungal growth were found to be significantly correlated (p<0.05) by statistical analysis, highlighting the impact of the environment on biodeterioration. The study highlights synergistic interactions among fungal species, contributing to accelerated biodeterioration. These findings underscore the urgency of implementing effective biocontrol measures and preventive maintenance to safeguard cultural heritage from fungal degradation.

References

Abd El Ghany, T. M. (2013). Stachybotrys chartarum: A novel biological agent for the extracellular synthesis of silver nanoparticles and their antimicrobial activity. Indonesian Journal of Biotechnology, 18(2), 75–82. DOI: https://doi.org/10.22146/ijbiotech.7871

Alakomi, H. L., Arrien, N., Gorbushina, A. A., Krumbein, W. E., Maxwell, I., McCullagh, C., Robertson, P., Ross, N., Saarela, M., Valero, J., Vendrell, M., & Young, M. E. (2004). Inhibitors of biofilm damage on mineral materials (BIODAM). Proceedings of the 10th International Congress on Deterioration and Conservation of Stone, 1, 399-406.

Cuevas, A., Febrero, M., & Fraiman, R. (2004). An ANOVA test for functional data. Computational Statistics & Data Analysis, 47(1), 111-122. DOI: https://doi.org/10.1016/j.csda.2003.10.021

Dakal, T. C., & Cameotra, S. S. (2012). Microbially induced deterioration of architectural heritage: Routes and mechanisms involved. Environmental Sciences Europe, 24, 36. DOI: https://doi.org/10.1186/2190-4715-24-36

De Hoog, G. S., & Guarro, J. (1995). Atlas of clinical fungi. Centraalburea Voor Schimmelcultures/Universitat Rovira I Virgili, Baarn/Reus.

El-Derby, A. O. D., Manso-ur, M. M. A., & Salem, M. Z. M. (2016). Investigation of the microbial deterioration of sandstone from the Osirion’s sarcophagus chamber as affected by rising groundwater level. Mediterranean Archaeology and Archaeometry, 16(1), 273-281.

González, J. M., & Saiz-Jiménez, C. (2005). Application of molecular nucleic acid-based techniques for the study of microbial communities in monuments and artworks. International Microbiology, 8(3), 189.

Gupta, S. P., & Mishra, R. (2023). Fungal involvement in bio-weathering of historical monuments with reference to Rumi Darwaza at Lucknow (Uttar Pradesh), India. International Journal of Science and Technology Research Archive, 4(1), 222–225. https://doi.org/10.53771/ijstra.2023.4.1.0038 DOI: https://doi.org/10.53771/ijstra.2023.4.1.0038

Gupta, S. P., Rana, K. S., Sharma, D. N., & Chandrol, G. K. (2013). Diversity and index of similarity of microorganisms on sandstone with special reference to historical monuments of Chhattisgarh, India. International Journal of Current Microbiology and Applied Science, 2(12), 51-57.

Klich, M. A. (2001). Identification of common Aspergillus species. United States Department of Agricultural Research Service, Southern Regional Research Center.

Keylock, C. (2005). Simpson diversity and the Shannon–Wiener index as special cases of a generalized entropy. Oikos, 109(1), 203-207. DOI: https://doi.org/10.1111/j.0030-1299.2005.13735.x

Kohonen, T. (1972). Correlation matrix memories. IEEE Transactions on Computers, 100(4), 353-359. DOI: https://doi.org/10.1109/TC.1972.5008975

Lan, W., Li, H., Wang, W. D., Katayama, Y., & Gu, J. D. (2010). Microbial community analysis of fresh and old microbial biofilms on Bayon Temple sandstone of Angkor Thom, Cambodia. Microbial Ecology, 60(1), 105–115. DOI: https://doi.org/10.1007/s00248-010-9707-5

Lancaster, H. O., & Seneta, E. (2005). Chi‐square distribution. Encyclopedia of Biostatistics, 2. DOI: https://doi.org/10.1002/0470011815.b2a15018

Lee, H., et al. (2018). Impact of environmental conditions on fungal proliferation. International Biodeterioration & Biodegradation, 129, 14-22.

Mohamed, S. S., & Ibrahim, S. E. (2018). Characterization and management of fungal deterioration of ancient limestone at different sites along Egypt. Egyptian Journal of Microbiology, 53(1), 177–191. https://doi.org/10.21608/EJM.2018.4735.1068 DOI: https://doi.org/10.21608/ejm.2018.4735.1068

Othman, A. S. (2015). Isolation and microbiological identification of bacterial contaminants in food and household surfaces: How to deal safely. Egyptian Pharmaceutical Journal, 14, 50-55. DOI: https://doi.org/10.4103/1687-4315.154720

Pitt, J. I. (2000). A laboratory guide to common Penicillium species. Food Science Australia.

Sedgwick, P. (2012). Pearson’s correlation coefficient. BMJ, 345. DOI: https://doi.org/10.1136/bmj.e4483

Shakya, S., Tripathi, N., & Bhadauria, S. (2020). Molecular identification of deteriorating Aspergillus spp. from sandstone monuments. Annals of Plant Sciences, 9(4), 3789–3795. https://doi.org/10.5281/APS.2020.9.4.2

Sharma, K., & Verma, K. P. (2011). Fungal involvement in biodeterioration of ancient monuments: Problem and prospects. The Journal of Phytology, 3(4), 15–17. https://www.cabdirect.org/cabdirect/abstract/20113149451

Sharma, P., et al. (2021). Environmental factors influencing fungal biodeterioration. Indian Journal of Microbiology, 61(3), 341-356. DOI: https://doi.org/10.1007/s12088-015-0532-x

Sterflinger, K., & Krumbein, W. E. (1997). Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestones. Geomicrobiology Journal, 14, 219-230. DOI: https://doi.org/10.1080/01490459709378045

Sterflinger, K. (2010). Fungi: Their role in deterioration of cultural heritage. Fungal Biology Reviews, 24(1-2), 47-55. DOI: https://doi.org/10.1016/j.fbr.2010.03.003

Warscheid, T., & Braams, J. (2000). Biodeterioration of stone: A review. International Biodeterioration & Biodegradation, 46, 343-368. DOI: https://doi.org/10.1016/S0964-8305(00)00109-8

Downloads

Published

2023-12-31

How to Cite

Soni, R., kumar, A., & Pandey, A. (2023). STATISTICAL ANALYSIS AND ASSESSMENT OF FUNGAL-INDUCED DETERIORATION IN SELECTED MONUMENTS OF PRAYAGRAJ. ShodhKosh: Journal of Visual and Performing Arts, 4(2), 4171–4177. https://doi.org/10.29121/shodhkosh.v4.i2.2023.4758