ENHANCING HUMAN-MACHINE INTERACTION IN INDUSTRIAL AUTOMATION: A CASE STUDY ON GP-PRO EX WITH THREELAMPBITINVERT.PRX EXAMPLE

Authors

  • Chinmay Pandey Research Scholar, Department of Computer Science, Indira Gandhi National Tribal University (IGNTU – A Central University), Amarkantak Distt. Anuppur Madhya Pradesh – 484887
  • Ritu Raj Sondhiya Research Scholar, Department of Computer Science, Indira Gandhi National Tribal University (IGNTU – A Central University), Amarkantak Distt. Anuppur Madhya Pradesh – 484887
  • Prashant Agrawal Department of Computer Science, Indira Gandhi National Tribal University (IGNTU – A Central University), Amarkantak Distt. Anuppur Madhya Pradesh – 484887
  • Prof. (Dr.) Vikash Kumar Singh Professor, Department of Computer Science, Indira Gandhi National Tribal University (IGNTU – A Central University), Amarkantak Distt. Anuppur Madhya Pradesh – 484887

DOI:

https://doi.org/10.29121/shodhkosh.v5.i1.2024.4570

Abstract [English]

The modern industrial automation relies heavily on Human-Machine Interfaces (HMIs) to create a vital connection between operators and their machines. This paper evaluates GP-Pro EX HMI design software capabilities by analyzing the ThreeLampBitInvert.prx specific example. This paper illustrates how GP-Pro EX software enables efficient HMI development and simulation and deployment through its features which lead to operational improvements and human error reduction. The ThreeLampBitInvert.prx example demonstrates how GP-Pro EX performs complex logic operations including bit inversion through an interface which operators find easy to use. Advanced HMI solutions matter in industrial automation based on study results which open the way for integrating emerging technologies like artificial intelligence (AI) and machine learning (ML).

References

Groover, M. P. (2020). Automation, Production Systems, and Computer-Integrated Manufacturing. Pearson Education.

Bishop, R. H. (2017). Mechatronics: An Introduction. CRC Press. DOI: https://doi.org/10.1201/9781420037241

Nof, S. Y. (2009). Springer Handbook of Automation. Springer. DOI: https://doi.org/10.1007/978-3-540-78831-7

Endsley, M. R. (2017). From Here to Autonomy: Lessons Learned from Human–Automation Research. Human Factors, 59(1), 5–27. DOI: https://doi.org/10.1177/0018720816681350

Sheridan, T. B. (2016). Human–Robot Interaction: Status and Challenges. Human Factors, 58(4), 525–532. DOI: https://doi.org/10.1177/0018720816644364

Lee, J., Bagheri, B., & Kao, H. A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23. DOI: https://doi.org/10.1016/j.mfglet.2014.12.001

Baines, T., Lightfoot, H., & Smart, P. (2011). Servitization within manufacturing: Exploring the provision of advanced services and their impact on vertical integration. Journal of Manufacturing Technology Management, 22(7), 947–954. DOI: https://doi.org/10.1108/17410381111160988

Pro-face. (n.d.). GP-Pro EX User Manual. Pro-face by Schneider Electric.

Norman, D. A. (2013). The Design of Everyday Things: Revised and Expanded Edition. Basic Books.

Wickens, C. D., Lee, J. D., Liu, Y., & Becker, S. E. G. (2004). An Introduction to Human Factors Engineering. Pearson Education.

Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A Model for Types and Levels of Human Interaction with Automation. IEEE Transactions on Systems, Man, and Cybernetics, 30(3), 286–297. DOI: https://doi.org/10.1109/3468.844354

Jardine, A. K. S., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20(7), 1483–1510. DOI: https://doi.org/10.1016/j.ymssp.2005.09.012

Lee, J., & Lee, J. (2015). Smart Factory Systems. Informatik-Spektrum, 38(3), 230–235. DOI: https://doi.org/10.1007/s00287-015-0891-z

Zhang, W., Yang, D., & Wang, H. (2019). Data-Driven Methods for Predictive Maintenance in Industrial Automation: A Survey. IEEE Transactions on Industrial Informatics, 15(5), 3084–3095.

Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0. National Academy of Science and Engineering.

Monostori, L. (2014). Cyber-physical production systems: Roots, expectations and R&D challenges. Procedia CIRP, 17, 9–13. DOI: https://doi.org/10.1016/j.procir.2014.03.115

Wang, L., Törngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical systems in manufacturing. Journal of Manufacturing Systems, 37, 517–527. DOI: https://doi.org/10.1016/j.jmsy.2015.04.008

Nielsen, J. (1994). Usability Engineering. Morgan Kaufmann. DOI: https://doi.org/10.1016/B978-0-08-052029-2.50009-7

Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S., & Elmqvist, N. (2016). Designing the User Interface: Strategies for Effective Human-Computer Interaction. Pearson.

Endsley, M. R. (1995). Toward a Theory of Situation Awareness in Dynamic Systems. Human Factors, 37(1), 32–64. DOI: https://doi.org/10.1518/001872095779049543

McKinsey & Company. (2020). The Future of Work in Industrial Automation. McKinsey Global Institute.

World Economic Forum. (2018). The Future of Jobs Report 2018. World Economic Forum.

Deloitte. (2019). Smart Factory: The Future of Manufacturing. Deloitte Insights.

Schneider Electric. (2021). GP-Pro EX Software Overview. Schneider Electric White Paper.

Pro-face. (2020). HMI Solutions for Industry 4.0. Pro-face Technical Report.

Downloads

Published

2024-06-30

How to Cite

Pandey, C., Sondhiya, R. R., Agrawal, P., & Singh, V. K. (2024). ENHANCING HUMAN-MACHINE INTERACTION IN INDUSTRIAL AUTOMATION: A CASE STUDY ON GP-PRO EX WITH THREELAMPBITINVERT.PRX EXAMPLE. ShodhKosh: Journal of Visual and Performing Arts, 5(1), 1758–1780. https://doi.org/10.29121/shodhkosh.v5.i1.2024.4570