BIOLOGICAL ACTIVITIES OF 1, 3, 4- THIADIAZOLES AND SOME OF THEIR METAL COMPLEXES: A CONCISE REVIEW
DOI:
https://doi.org/10.29121/shodhkosh.v5.i6.2024.4344Keywords:
1,3, 4-Thiadiazole Derivatives, Metal Complexes, Antimicrobial, Anticancer, Anti-Inflammatory, Anticonvulsant ActivityAbstract [English]
The rise of synthetic drug resistance, the emergence of novel pathogens, and the limitations of existing drugs in treating complex infections necessitate the development of new drug formations with potential effectiveness and new therapies. The nitrogen-containing heterocyclic compounds are crucial across various scientific and industrial fields due to their unique chemical properties and versatility. Thiadiazole is a five-membered heterocyclic compound having two nitrogen and one sulfur atom. Among the four isomers, 1,3,4-thiadiazole showed remarkable biological activity. The 1,3,4-thiadiazole derivatives and their metal complexes have gained attention in medicinal chemistry due to their versatile biological activities as antimicrobial, anticancer, anti-inflammatory, antitubercular, antioxidant, and anticonvulsant activities. The study provides a comprehensive overview of the diverse pharmacological properties exhibited by these compounds and gives an insight into the position of different substituents and their complexation with different metal ions for pharmacological values. Their impact on biological activity, emphasizes the importance of 1,3,4-thiadiazole derivatives in drug development and suggests future research directions to enhance their efficacy and specificity in targeting diseases, combat resistance, and paving the way for the development of novel therapeutic agents.
References
Jain A. K., Sharma S., Vaidya A., Ravichandran V., & Agrawal R. K. 2013.1,3,4-thiadiazole and its derivatives:A review on recent progress in biological activities, Wiley & Sons DOI: https://doi.org/10.1111/cbdd.12125
Singh A. K., Mishra G.,& Jyoti K. 2011. Review on biological activities of 1,3,4-thiadiazole derivatives, Journal of Applies Pharm
aceutical Science. 01(05): 44-49. DOI: https://doi.org/10.52283/NSWRCA.AJBMR.20110105A06
Li, Y., Geng, J., Liu, Y., Yu, S., & Zhao, G. 2013. Thiadiazole—A promising structure in medicinal chemistry. ChemMedChem, 8(1), 27-41. DOI: https://doi.org/10.1002/cmdc.201200355
Aggarwal N., Kumar R., Dureja P. & Khurana J. M. 2012. Synthesis of novel nalidixic acid-basrd 1,3,4-thiadiazole and 1,3,4-oxadiazole derivatives as potent antibacterial agents, Chem. Biol. Drug Dis.79, 384-397. DOI: https://doi.org/10.1111/j.1747-0285.2011.01316.x
Abdel-Wahab, B.F., Abdel-Aziz, H.A., & Ahmed, E.M. 2009. Synthesis and antimicrobial evalution of some 1,3-triazole, 1,3,4-thiadiazole, 1,2,4-triazole, and 1,2,4-triazolo[3,4-b][1,3,4]-thiadiazine derivatives including a 5-(benzofuran-2-yl)- 1-phenylpyrazole moiety, Monatsh Chem. 140: 601-605. DOI: https://doi.org/10.1007/s00706-008-0099-x
Pintilie O., Profire L., Sunel V., Popa M. & Pui A.2007. Synthesis and antimicrobial activity of some new 1,3,4-thiadiazole and 1,2,4-triazole compounds having a D, L-methionine moiety, Molecules. 12, 103-113. DOI: https://doi.org/10.3390/12010103
Farghaly T. A., Abdallah M. A.& Aziz M. R. A. 2012. Synthesis and antimicrobial activity of some new 1,3,4- thiadiazole derivatives, Molecules. 17:14625-14636. DOI: https://doi.org/10.3390/molecules171214625
Wu Z., Shi J. C., Hu D.,& Song B. 2021. Design, synthesis, antibacterial activity, and mechanisms of novel 1,3,4- thiadiazole derivatives containing an amide moiety, Journal of agricultural and food chemistry, DOI: https://doi.org/10.1021/acs.jafc.1c01626
https://doi.org/10.1032/acs.jafc.1c01626
Sahu S., Sahu T., Kalyani G., and Gidwani B. 2021. Synthesis and evaluation of antimicrobial activity of 1,3,4-thiadiazole analogues for potential scaffold, Journal of pharmacopuncture. 24(1): 32-40. DOI: https://doi.org/10.3831/KPI.2021.24.1.32
Chen M., Zhang X., Lu D., Luo H., Zhou Z., Qin X., Wu W. & Zhang G. 2021. Synthesis and bioactivities of novel 1,3,4-thiadiazole derivatives of glucosides, Frontiers in chemistry. 9:645876. DOI: https://doi.org/10.3389/fchem.2021.645876
Kadi A. A., Al-Abdullah E. S., Shehata I. A., Habib E. A., Ibrahim T. M., & El-Emam A. A. 2010. Synthesis, antimicrobial and anti-inflammatory activities of novel 5-(1-adamantyl)-1,3,4-thiadiazole derivatives, Euro J Med Chem. 45(11): 5006-5011. DOI: https://doi.org/10.1016/j.ejmech.2010.08.007
Kadi A. A., El-Brollosy N. R., Al-Deeb O. A., Habib E. E. Ibrahim T. M., & El-Emam A A. 2007. Synthesis, antimicrobial, and anti-inflammatory activities of novel 2-(1-adamantyl)-5-substituted-1,3,4-oxadiazoles and 2-(1-adamantylamino)-5-substituted-1,3,4-thiadiazoles, Euro J Med Chem.42(2):235-242. DOI: https://doi.org/10.1016/j.ejmech.2006.10.003
Bahram L., Negar M., Ali A., & Alireza F.2011. Synthesis and in vitro antibacterial activity of new 2-(1-methyl-4-nitro-1H-imidazol-5-ylsulfonyl)-1,3,4-thiadiazoles, E-J Chem. 8(3):1120-1123. DOI: https://doi.org/10.1155/2011/642071
Onkal T., Dogruer D. S., Uzun L., Adak S., Ozkan S., & Sahin M. F. 2008. Synthesis and antimicrobial activity of new 1,2,4-triazole and 1,3,4-thiadiazole derivatives, Journal of enzyme inhibition and medicinal chemistry. 23(2):277-284. DOI: https://doi.org/10.1080/14756360701408697
Janowska S., Khulyuk D., Bielawska A., Szymanowska A., Gornowicz A., Bielawski K., Noworol J., Mandziuk S., & Wujec M. 2022. New 1,3,4-thiadiazole derivatives with anticancer activity, Molecules. 27:1814. DOI: https://doi.org/10.3390/molecules27061814
Dawood K. M., & Gomha S. M. 2014. Synthesis and anti-cancer activity of 1,3,4-thiadiazole and 1,3-thiazole derivatives having 1,3,4-oxadiazole moiety, J. Heterocyclic Chem. 00: 00. DOI: https://doi.org/10.1002/jhet.2250
Chowrasia D., Karthikeyan C., Choure L., Sahabjada, Gupta M., Md Arshad, & Trivedi P. 2013. Synthesis, characterization and anti cancer activity of some fluorinated 3,6-diaryl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles, Arabian Journal of Chemistry.
Rashdan R. M., Mohammad Farag M., El-Gendey M. S., & Mounier M. M. 2019. Toward rational design of novel anti-cancer drugs based on targeting ,solubility, and bioavailability exemplified by 1,3,4-thiadiazole derivatives synthesized under solvent-free conditions, Molecules. 24:2371. DOI: https://doi.org/10.3390/molecules24132371
Kumar D., Kumar N. M., Chang K. H., & Shah K. 2010. Synthesis and anticancer activity of 5-(3-indolyl)-1,3,4-thiadiazoles, European journal of medical chemistry. 45: 4664-4668. DOI: https://doi.org/10.1016/j.ejmech.2010.07.023
Schenone S., Brullo C., Bruno O., Bondavalli F., Ranise A., Filippelli W., Rinaldi B., Capuano A., & Falcone G. 2006. New1,3,4-thiadiazole derivatives endowed with analgesic and anti-inflammatory activities, Bioorganic & medical chemistry.14:1698-1705. DOI: https://doi.org/10.1016/j.bmc.2005.10.064
Maddila S., Gorle S., Sampath C., & Lavanya P. 2012. Synthesis and anti-inflammatory activity of some new 1,3,4-thiadiazoles containing pyrazole and pyrrole nucleus, Journal of Saudi Chemical Society.
Chawla G., Kumar U., Bawa S., & Kumar J. 2012. Synthesis and evaluation of anti-inflammatory , analgesic and ulcerogenic activities of 1,3,4-oxadiazole and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives, Journal of Enzyme Inhibition and Medicinal Chemistry. 27(5):658-665. DOI: https://doi.org/10.3109/14756366.2011.606543
Winter C. A., Risley E. A., & Nuss G. W. 1962. Carrageenan-induced edema in hind paw of the rats as an assay for anti-inflammatory drugs, Proc So Exp Biol Med. 111:544-547. DOI: https://doi.org/10.3181/00379727-111-27849
Kumar H., Javed S. A., Khan S. A., & Amir M. 2008. 1,3,4 Oxadiazole/thiadiazole and 1,2,4-triazole derivatives of biphenyl-4-yloxy acetic acid: Synthesis and preliminary evaluation of biological properties, Euro J Med Chem. 43:2688-2698. DOI: https://doi.org/10.1016/j.ejmech.2008.01.039
Sadat-Ebrahimi S. E., Mirmohammadi M., Tabatabaei Z. M., Arani M. A., Ashtiani S. J., Hashemian M., Foroumadi P., Meymandi A. Y., Moghimi S., Moshafi M. H., Norouzi P., Aedestani S. K.,& Foroumadi A. 2019. Novel 5-(nitrothiophene-2-yl)-1,3,4-thiadiazole derivatives: Synthesis and antileishmanial activity against promastigote stage of Leishmania major, Iranian Journal of Pharmaceutical Research. 18(4): 1816-1822.
Al-Qahtani A., Siddiqui Y. M., Bekhit A. A., El-Sayed O. A., Aboul-Enein H. Y., & Al-Ahdal M. N. 2009. Inhibition of growth of Leishmania donovani promastigotes by newly synthesized 1,3,4-thiadiazole analogs, Saudi Pharmaceutical Journal. 17:227-232. DOI: https://doi.org/10.1016/j.jsps.2009.08.005
Tahghighi A., Emami S., Ramzi S., Marznaki F. R., Ardestani S. K., Dastmalchi S., Kobarfard F., Shafiee A., & Foroumadi A. 2013. New 5-(nitroheteroaryl)-1,3,4-thiadiazoles containingacyclic amines at C-2: Synthesis and SAR study for their antileishmanial activity, Journal of Enzyme Inhib. Med. Chem. 28: 843-852. DOI: https://doi.org/10.3109/14756366.2012.689297
Pattanayak P., Sharma R., & Sahoo P. K.2009. Synthesis and evaluation of 2-amino-5-sulfanyl-1,3,4-thiadiazoles as antidepressant, anxiolytic, and anticonvulsant agents, Medicinal Chemistry Research. 18:351-361. DOI: https://doi.org/10.1007/s00044-008-9132-1
Stillings M. R., Welbourn A. P., & Walter D. S. 1986. Substituted 1,3,4-thiadiazoles with anticonvulsant activity. 2 aminoalkyl derivatives, Journal of Medicinal Chemistry. 29: 2280-2284. DOI: https://doi.org/10.1021/jm00161a025
Singh A. K., Sarthy R. P., & Lohani M. 2012. Design, synthesis and anticonvulsant activity of some 1,3,4-thiadiazole derivatives, Int. J. Chem. Sci.10(3): 1487-1492.
Gan X., Hu D., Chen Z., Wang Y., & Song B. 2017. Synthesis and antiviral evaluation of novel 1,3,4-oxadiazole/thiadiazole-chalcone conjugates, Bioorganic & Medicinal Chemistry Letters. DOI: https://doi.org/10.1016/j.bmcl.2017.08.038
Rashdan H., Abdelmonsef A. H.,& Abou-Krisha M. M. 2022. Synthesis and identification of novel potential thiadiazole based molecules containing 1,2,3-triazole moiety against COVID-19 main protease through structure-guided virtual Screening approach, Biointerface Research in Applied Chemistry. 12:8258-8270. DOI: https://doi.org/10.33263/BRIAC126.82588270
Oruç, E. E., Rollas, S., Kandemirli, F., Shvets, N., & Dimoglo, A. S. (2004). 1, 3, 4-thiadiazole derivatives. Synthesis, structure elucidation, and structure− antituberculosis activity relationship investigation. Journal of medicinal chemistry, 47(27), 6760-6767. DOI: https://doi.org/10.1021/jm0495632
Patel, H. M., Noolvi, M. N., Sethi, N. S., Gadad, A. K., & Cameotra, S. S. (2017). Synthesis and antitubercular evaluation of imidazo [2, 1-b][1, 3, 4] thiadiazole derivatives. Arabian Journal of Chemistry, 10, S996-S1002. DOI: https://doi.org/10.1016/j.arabjc.2013.01.001
Karakuş, S. E. V. G. İ., & Rollas, S. J. I. F. (2002). Synthesis and antituberculosis activity of new N-phenyl-N′-[4-(5-alkyl/arylamino-1, 3, 4-thiadiazole-2-yl) phenyl] thioureas. Il Farmaco, 57(7), 577-581. DOI: https://doi.org/10.1016/S0014-827X(02)01252-1
Kolavi, G., Hegde, V., ahmed Khazi, I., & Gadad, P. (2006). Synthesis and evaluation of antitubercular activity of imidazo [2, 1-b][1, 3, 4] thiadiazole derivatives. Bioorganic & medicinal chemistry, 14(9), 3069-3080. DOI: https://doi.org/10.1016/j.bmc.2005.12.020
Joseph, A., Shah, C. S., Kumar, S. S., Alex, A. T., Maliyakkal, N., Moorkoth, S., & Mathew, J. E. (2013). Synthesis, in vitro anticancer and antioxidant activity of thiadiazole substituted thiazolidin-4-ones. Acta pharmaceutica, 63(3), 397-408. DOI: https://doi.org/10.2478/acph-2013-0028
Djukic, M., Fesatidou, M., Xenikakis, I., Geronikaki, A., Angelova, V. T., Savic, V., ... & Saso, L. (2018). In vitro antioxidant activity of thiazolidinone derivatives of 1, 3-thiazole and 1, 3, 4-thiadiazole. Chemico-Biological Interactions, 286, 119-131. DOI: https://doi.org/10.1016/j.cbi.2018.03.013
Jakovljević, K., Matić, I. Z., Stanojković, T., Krivokuća, A., Marković, V., Joksović, M. D., ... & Joksović, L. (2017). Synthesis, antioxidant and antiproliferative activities of 1, 3, 4-thiadiazoles derived from phenolic acids. Bioorganic & medicinal chemistry letters, 27(16), 3709-3715. DOI: https://doi.org/10.1016/j.bmcl.2017.07.003
Rabie, A. M., Tantawy, A. S., & Badr, S. M. (2018). Design, synthesis, and biological evaluation of new 5-substituted-1, 3, 4-thiadiazole-2-thiols as potent antioxidants. Researcher, 10(7), 21-43.
Muğlu, H., Akın, M., Çavuş, M. S., Yakan, H., Şaki, N., & Güzel, E. (2022). Exploring of antioxidant and antibacterial properties of novel 1, 3, 4-thiadiazole derivatives: Facile synthesis, structural elucidation and DFT approach to antioxidant characteristics. Computational biology and chemistry, 96, 107618. DOI: https://doi.org/10.1016/j.compbiolchem.2021.107618
Al-Omair, M. A., Sayed, A. R., & Youssef, M. M. (2015). Synthesis of novel triazoles, tetrazine, thiadiazoles and their biological activities. Molecules, 20(2), 2591-2610. DOI: https://doi.org/10.3390/molecules20022591
Can, N. Ö., Can, Ö. D., Osmaniye, D., & Demir Özkay, Ü. (2018). Synthesis of some novel thiadiazole derivative compounds and screening their antidepressant-like activities. Molecules, 23(4), 716. DOI: https://doi.org/10.3390/molecules23040716
Clerici, F., Pocar, D., Guido, M., Loche, A., Perlini, V., & Brufani, M. (2001). Synthesis of 2-amino-5-sulfanyl-1, 3, 4-thiadiazole derivatives and evaluation of their antidepressant and anxiolytic activity. Journal of medicinal chemistry, 44(6), 931-936. DOI: https://doi.org/10.1021/jm001027w
Yusuf, M., Khan, R. A., & Ahmed, B. (2008). Syntheses and anti-depressant activity of 5-amino-1, 3, 4-thiadiazole-2-thiol imines and thiobenzyl derivatives. Bioorganic & medicinal chemistry, 16(17), 8029-8034. DOI: https://doi.org/10.1016/j.bmc.2008.07.056
Yousif, E., Majeed, A., Al-Sammarrae, K., Salih, N., Salimon, J., & Abdullah, B. (2017). Metal complexes of Schiff base: preparation, characterization and antibacterial activity. Arabian Journal of Chemistry, 10, S1639-S1644. DOI: https://doi.org/10.1016/j.arabjc.2013.06.006
Malik, S., Ghosh, S., & Mitu, L. (2011). Complexes of some 3d-metals with a Schiff base derived from 5-acetamido-1, 3, 4-thiadiazole-2-sulphonamide and their biological activity. Journal of the Serbian Chemical Society, 76(10), 1387-1394. DOI: https://doi.org/10.2298/JSC110111118M
Ghosh, S., Malik, S., Jain, B., & Ganesh, N. (2009). Synthesis, Characterization and biological studies of Zn (II) complex of schiff base derived from 5-acetazolamido-1, 3, 4-thiadiazole-2-sulphonamide, a diuretic drug. Asian J. Exp. Sci, 23(1), 189-192.
Chohan, Z. H., Pervez, H., Rauf, A., & Supuran, C. T. (2002). Antibacterial Role of SO 4 2−, NO 3−, C 2 O 4 2− and CH 3 CO 2− Anions on Cu (II) and Zn (II) Complexes of a Thiadiazole‐derived Pyrrolyl Schiff Base. Metal‐Based Drugs, 8(5), 263-267. DOI: https://doi.org/10.1155/MBD.2002.263
Basher, N. A., Flifel, I. A., & Mashaf, A. A. (2020, September). Synthesis, characterization and antibacterial study of some complexes derivatives from1, 3, 4–Thiadiazole Schiff base. In IOP conference series: Materials Science and Engineering (Vol. 928, No. 5, p. 052009). IOP Publishing. DOI: https://doi.org/10.1088/1757-899X/928/5/052009
Jha, A., Murthy, Y. L. N., Sanyal, U., & Durga, G. (2012). Rapid synthesis, characterization, anticancer and antimicrobial activity studies of substituted thiadiazoles and their dinucleating ligand metal complexes. Medicinal Chemistry Research, 21, 2548-2556. DOI: https://doi.org/10.1007/s00044-011-9778-y
Turan, N., Topçu, M. F., Ergin, Z., Sandal, S., Tuzcu, M., Akpolat, N., ... & Karatepe, M. (2011). Pro-oxidant and antiproliferative effects of the 1, 3, 4-thiadiazole–based Schiff base and its metal complexes. Drug and Chemical Toxicology, 34(4), 369-378. DOI: https://doi.org/10.3109/01480545.2011.564177
Ahmed, Y. B., Merzouk, H., Harek, Y., Medjdoub, A., Cherrak, S., Larabi, L., & Narce, M. (2015). In vitro effects of nickel (II) and copper (II) complexes with 2, 5-bis (2-pyridyl)-1, 3, 4-thiadiazole on T lymphocyte proliferation and intracellular redox status. Medicinal Chemistry Research, 24, 764-772. DOI: https://doi.org/10.1007/s00044-014-1115-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Aaliya Rahman, Smriti Singh

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.