ARTIFICIAL INTELLIGENCE IN POWER ELECTRONICS: TRENDS AND APPLICATIONS

Authors

  • Neelashetty K Department of EEE, Guru Nanak Dev Engineering College, Bidar, Karnataka, 585403, India
  • Veerendra Dakulagi Department of CSE (Data Science), Guru Nanak Dev Engineering College, Bidar, Karnataka, 585403, India

DOI:

https://doi.org/10.29121/shodhkosh.v5.i4.2024.4265

Keywords:

Artificial Intelligence, Power Electronics, Machine Learning, Deep Learning, Intelligent Control, Fault Diagnosis, Predictive Maintenance, Renewable Energy Systems, Optimization Techniques, Adaptive Control, Smart Grids, Energy Management

Abstract [English]

The integration of Artificial Intelligence (AI) in power electronics has revolutionized the design, control, and optimization of power conversion systems. AI-driven techniques, including machine learning, deep learning, and evolutionary algorithms, enhance efficiency, fault diagnosis, and predictive maintenance in modern power electronic systems. This paper presents a comprehensive review of emerging AI applications in power electronics, focusing on intelligent control strategies, real-time monitoring, and optimization techniques. Key trends, such as AI-enabled energy management in renewable power systems, adaptive control in electric drives, and predictive analytics for fault detection, are analyzed. Additionally, the paper highlights challenges, including computational complexity, data availability, and implementation constraints, while discussing future research directions for AI-driven advancements in power electronics.

References

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Berlin, Germany: Springer-Verlag.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. Cambridge, MA, USA: MIT Press.

Wu, T., Wang, Z., Ozpineci, B., Chinthavali, M., & Campbell, S. (2019). Automated heatsink optimization for air-cooled power semiconductor modules. IEEE Transactions on Power Electronics, 34(6), 5027–5031. DOI: https://doi.org/10.1109/TPEL.2018.2881454

Zhan, X., Wang, W., & Chung, H. (2019). A neural-network-based color control method for multi-color LED systems. IEEE Transactions on Power Electronics, 34(8), 7900–7913. DOI: https://doi.org/10.1109/TPEL.2018.2880876

Wei, C., Zhang, Z., Qiao, W., & Qu, L. (2015). Reinforcement-learning-based intelligent maximum power point tracking control for wind energy conversion systems. IEEE Transactions on Industrial Electronics, 62(10), 6360–6370. DOI: https://doi.org/10.1109/TIE.2015.2420792

Wei, C., Zhang, Z., Qiao, W., & Qu, L. Y. (2016). An adaptive network-based reinforcement learning method for MPPT control of PMSG wind energy conversion systems. IEEE Transactions on Power Electronics, 31(11), 7837–7848. DOI: https://doi.org/10.1109/TPEL.2016.2514370

Bandyopadhyay, I., Purkait, P., & Koley, C. (2019). Performance of a classifier based on time-domain features for incipient fault detection in inverter drives. IEEE Transactions on Industrial Informatics, 15(1), 3–14. DOI: https://doi.org/10.1109/TII.2018.2854885

Mejdoubi, A. E., Chaoui, H., Sabor, J., & Gualous, H. (2018). Remaining useful life prognosis of supercapacitors under temperature and voltage aging conditions. IEEE Transactions on Industrial Electronics, 65(5), 4357–4367. DOI: https://doi.org/10.1109/TIE.2017.2767550

Tao, F., Zhan, H., Liu, A., & Nee, A. Y. C. (2019). Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial Informatics, 15(4), 2405–2415. DOI: https://doi.org/10.1109/TII.2018.2873186

He, X., Shi, W., Li, W., Luo, H., & Zhao, R. (2017). Reliability enhancement of power electronics systems by big data science. Proceedings of the Chinese Society of Electrical and Electronic Engineering, 37(1), 209–221.

Tsui, K. L., Zhao, Y., & Wang, D. (2019). Big data opportunities: System health monitoring and management. IEEE Access, 7, 68853–68867. DOI: https://doi.org/10.1109/ACCESS.2019.2917891

De Leon-Aldaco, S. E., Calleja, H., & Alquicira, J. A. (2015). Metaheuristic optimization methods applied to power converters: A review. IEEE Transactions on Power Electronics, 30(12), 6791–6803. DOI: https://doi.org/10.1109/TPEL.2015.2397311

Meireles, M. R. G., Almeida, P. E. M., & Simoes, M. G. (2003). A comprehensive review for industrial applicability of artificial neural networks. IEEE Transactions on Industrial Electronics, 50(3), 585–601. DOI: https://doi.org/10.1109/TIE.2003.812470

Bose, B. K. (2007). Neural network applications in power electronics and motor drives—An introduction and perspective. IEEE Transactions on Industrial Electronics, 54(1), 14–33. DOI: https://doi.org/10.1109/TIE.2006.888683

Bose, B. K. (2017). Artificial intelligence techniques in smart grid and renewable energy systems—Some example applications. Proceedings of the IEEE, 105(11), 2262–2273. DOI: https://doi.org/10.1109/JPROC.2017.2756596

Seyedmahmoudian, M., et al. (2016). State-of-the-art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems—A review. Renewable and Sustainable Energy Reviews, 64, 435–455. DOI: https://doi.org/10.1016/j.rser.2016.06.053

Mellit, A., & Kalogirou, S. A. (2008). Artificial intelligence techniques for photovoltaic applications: A review. Progress in Energy and Combustion Science, 34(5), 574–632. DOI: https://doi.org/10.1016/j.pecs.2008.01.001

Chung, H. S.-H., Wang, H., Blaabjerg, F., & Pecht, M. (2015). Reliability of Power Electronic Converter Systems. London, U.K.: Institution of Engineering and Technology. DOI: https://doi.org/10.1049/PBPO080E

Riera-Guasp, M., Antonino-Daviu, J. A., & Capolino, G. (2015). Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: State of the art. IEEE Transactions on Industrial Electronics, 62(3), 1746–1759. DOI: https://doi.org/10.1109/TIE.2014.2375853

Soliman, H., Wang, H., & Blaabjerg, F. (2016). A review of the condition monitoring of capacitors in power electronic converters. IEEE Transactions on Industry Applications, 52(6), 4976–4989. DOI: https://doi.org/10.1109/TIA.2016.2591906

Pecht, M., & Jaai, R. (2010). A prognostics and health management roadmap for information and electronics-rich systems. Microelectronics Reliability, 50(3), 317–323. DOI: https://doi.org/10.1016/j.microrel.2010.01.006

Duchesne, L., Karangelos, E., & Wehenkel, L. (2020). Recent developments in machine learning for energy systems reliability management. Proceedings of the IEEE, 108(9), 1656–1676. DOI: https://doi.org/10.1109/JPROC.2020.2988715

Pinto, R. C. G. J., & Ozpineci, B. (2019). Tutorial: Artificial intelligence applications to power electronics. Proceedings of the IEEE Energy Conversion Congress and Exposition, 1–139.

Foutz, J. (1988). Power supply circuit development estimating aid: An expert system application. Proceedings of the Annual IEEE Applied Power Electronics Conference and Exposition, 64–71. DOI: https://doi.org/10.1109/APEC.1988.10552

Chhaya, S. M., & Bose, B. K. (1995). Expert system-aided automated design, simulation, and controller tuning of AC drive system. Proceedings of the 21st Annual Conference of IEEE Industrial Electronics Society, 1, 712–718. DOI: https://doi.org/10.1109/IECON.1995.483495

Li, W., & Ying, J. P. (2008). Design and analysis of artificial intelligence (AI) research for power supply—Power electronics expert system (PEES). Proceedings of the Annual IEEE Applied Power Electronics Conference and Exposition, 1–4, 2009–2015. DOI: https://doi.org/10.1109/APEC.2008.4523003

Fezzani, D., Piquet, H., & Foch, H. (1997). Expert system for the CAD in power electronics—Application to UPS. IEEE Transactions on Power Electronics, 12(3), 578–586. DOI: https://doi.org/10.1109/63.575685

Elsaadawi, A. M., Kalas, A. E., & Fawzi, M. (2008). Development of an expert system for fault diagnosis of a three-phase induction motor drive system. Proceedings of the International Middle-East Power Systems Conference, 497–502. DOI: https://doi.org/10.1109/MEPCON.2008.4562346

Izuno, Y., Takeda, R., & Nakaoka, M. (1990). New fuzzy reasoning-based high-performance speed/position control schemes for ultrasonic motors driven by a two-phase resonant inverter. Proceedings of the IEEE Industry Applications Society Annual Meeting, 325–330. DOI: https://doi.org/10.1109/IAS.1990.152205

Simoes, M. G., Bose, B. K., & Spiegel, R. J. (1997). Design and performance evaluation of a fuzzy-logic-based variable-speed wind generation system. IEEE Transactions on Industry Applications, 33(4), 956–965. DOI: https://doi.org/10.1109/28.605737

Downloads

Published

2024-04-30

How to Cite

K, N., & Dakulagi, V. (2024). ARTIFICIAL INTELLIGENCE IN POWER ELECTRONICS: TRENDS AND APPLICATIONS. ShodhKosh: Journal of Visual and Performing Arts, 5(4), 1375–1385. https://doi.org/10.29121/shodhkosh.v5.i4.2024.4265