CURRENT CHALLENGES, AND FUTURE OPPORTUNITIES FOR FERMENTED TEA LEAF SEGMENTATION, CLASSIFICATION, AND OPTIMIZATION

Authors

  • C M Sulaikha Research Scholar, Department of Computer Science, Sri Krishna Arts and Science College, Coimbatore
  • Dr. A SomaSundaram Assistant Professor, Department of Computer Applications, Sri Krishna Arts and Science College, Coimbatore

DOI:

https://doi.org/10.29121/shodhkosh.v5.i1.2024.3949

Keywords:

Fermented Tea Leaves, Image Segmentation, Classification Algorithms, Quality Optimization, Deep Learning, Hyperspectral Imaging, Agricultural Automation

Abstract [English]

Fermented tea leaves emerged as a significant agricultural commodity on the global scene. This type of product experiences segmentation, classification, and optimization due to the different textures, different stages of fermentation, and environmental influences. The article reviews the progresses and limitations made by automatic systems in the realm of image-based analysis of fermented tea leaves, machine learning algorithms, and optimization methods. The challenges of high segmentation accuracy in heterogeneous samples, robust classification among diverse tea varieties, and scaling of optimization strategies for quality enhancement are some key challenges. Apart from hybrid optimization algorithms designed to interpret the gap, future areas of opportunities that utilize deep learning and multimodal fusion. Highlights from different hyperspectral imaging approaches and AI-driven models providing quick solutions with high accuracy and cost-effectiveness.

References

Wijesinghe, P., Wijeweera, G. and De Silva, K.R.D., 2023. Healthy Brain Ageing and Longevity; the Harmony of Natural Products, APOE Polymorphism, and Melatonin. In Sleep and Clocks in Aging and Longevity (pp. 143-164). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-031-22468-3_7

Ferhatosmanoğlu, A., Selcuk, L.B., Arıca, D.A., Ersöz, Ş. and Yaylı, S., 2022. Frequency of skin cancer and evaluation of risk factors: A hospital‐based study from Turkey. Journal of Cosmetic Dermatology, 21(12), pp.6920-6927. DOI: https://doi.org/10.1111/jocd.15355

David, S.R., Abdullah, K., Shanmugam, R., Thangavelu, L., Das, S.K. and Rajabalaya, R., 2021. Green synthesis, characterization and in vivo evaluation of white tea silver nanoparticles with 5-fluorouracil on colorectal cancer. Bionanoscience, 11, pp.1095-1107. DOI: https://doi.org/10.1007/s12668-021-00905-7

Özduran, G., Becer, E. and Vatansever, H.S., 2023. The role and mechanisms of action of catechins in neurodegenerative diseases. Journal of the American Nutrition Association, 42(1), pp.67-74. DOI: https://doi.org/10.1080/07315724.2021.1981487

Bag, S., Mondal, A., Majumder, A. and Banik, A., 2022. Tea and its phytochemicals: Hidden health benefits & modulation of signaling cascade by phytochemicals. Food Chemistry, 371, p.131098. DOI: https://doi.org/10.1016/j.foodchem.2021.131098

Luo, X., Gouda, M., Perumal, A.B., Huang, Z., Lin, L., Tang, Y., Sanaeifar, A., He, Y., Li, X. and Dong, C., 2022. Using surface-enhanced Raman spectroscopy combined with chemometrics for black tea quality assessment during its fermentation process. Sensors and Actuators B: Chemical, 373, p.132680. DOI: https://doi.org/10.1016/j.snb.2022.132680

Li, L., Li, M., Liu, Y., Cui, Q., Bi, K., Jin, S., Wang, Y., Ning, J. and Zhang, Z., 2021. High-sensitivity hyperspectral coupled self-assembled nanoporphyrin sensor for monitoring black tea fermentation. Sensors and Actuators B: Chemical, 346, p.130541. DOI: https://doi.org/10.1016/j.snb.2021.130541

Bo, B., Kim, S.A. and Han, N.S., 2020. Bacterial and fungal diversity in Laphet, traditional fermented tea leaves in Myanmar, analyzed by culturing, DNA amplicon-based sequencing, and PCR-DGGE methods. International Journal of Food Microbiology, 320, p.108508. DOI: https://doi.org/10.1016/j.ijfoodmicro.2020.108508

Samanta, S., 2022. Potential bioactive components and health promotional benefits of tea (Camellia sinensis). Journal of the American Nutrition Association, 41(1), pp.65-93. DOI: https://doi.org/10.1080/07315724.2020.1827082

Shao, C.Y., Zhang, Y., Lv, H.P., Zhang, Z.F., Zeng, J.M., Peng, Q.H., Zhu, Y. and Lin, Z., 2022. Aromatic profiles and enantiomeric distributions of chiral odorants in baked green teas with different picking tenderness. Food Chemistry, 388, p.132969. DOI: https://doi.org/10.1016/j.foodchem.2022.132969

Choudhury, N.D., Bhuyan, N., Narzari, R., Saikia, R., Seth, D., Saha, N. and Kataki, R., 2021. Various conversion techniques for the recovery of value-added products from tea waste. In Valorization of Agri-Food Wastes and By-Products (pp. 237-265). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-824044-1.00015-5

Wang, Y., Ren, Z., Chen, Y., Lu, C., Deng, W.W., Zhang, Z. and Ning, J., 2023. Visualizing chemical indicators: Spatial and temporal quality formation and distribution during black tea fermentation. Food Chemistry, 401, p.134090. DOI: https://doi.org/10.1016/j.foodchem.2022.134090

Rahman, M.T., Ferdous, S., Jenin, M.S., Mim, T.R., Alam, M. and Al Mamun, M.R., 2021. Characterization of tea (Camellia sinensis) granules for quality grading using computer vision system. Journal of Agriculture and Food Research, 6, p.100210. DOI: https://doi.org/10.1016/j.jafr.2021.100210

Yang, C., Zhao, Y., An, T., Liu, Z., Jiang, Y., Li, Y. and Dong, C., 2021. Quantitative prediction and visualization of key physical and chemical components in black tea fermentation using hyperspectral imaging. Lwt, 141, p.110975. DOI: https://doi.org/10.1016/j.lwt.2021.110975

Sanwal, N., Gupta, A., Bareen, M.A., Sharma, N. and Sahu, J.K., 2023. Kombucha fermentation: Recent trends in process dynamics, functional bioactivities, toxicity management, and potential applications. Food chemistry advances, 3, p.100421. DOI: https://doi.org/10.1016/j.focha.2023.100421

Xu, Q., Zhou, Y. and Wu, L., 2024. Advancing tea detection with artificial intelligence: Strategies, progress, and future prospects. Trends in Food Science & Technology, p.104731. DOI: https://doi.org/10.1016/j.tifs.2024.104731

Shaikh, T.A., Rasool, T. and Lone, F.R., 2022. Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Computers and Electronics in Agriculture, 198, p.107119. DOI: https://doi.org/10.1016/j.compag.2022.107119

Islam, M.R., Zamil, M.Z.H., Rayed, M.E., Kabir, M.M., Mridha, M.F., Nishimura, S. and Shin, J., 2024. Deep Learning and Computer Vision Techniques for Enhanced Quality Control in Manufacturing Processes. IEEE Access.

Shitandi, A.A., 2025. Tea processing and impact on catechins, theaflavin and thearubigin formation. In Tea in health and disease prevention (pp. 133-144). Academic Press. DOI: https://doi.org/10.1016/B978-0-443-14158-4.00073-7

Mao, Y.L., Wang, J.Q., Chen, G.S., Granato, D., Zhang, L., Fu, Y.Q., Gao, Y., Yin, J.F., Luo, L.X. and Xu, Y.Q., 2021. Effect of chemical composition of black tea infusion on the color of milky tea. Food Research International, 139, p.109945. DOI: https://doi.org/10.1016/j.foodres.2020.109945

Chen, X., Wang, M., Wang, Z., Liu, X., Cao, W., Zhang, N., Qi, Y., Cheng, S., Huang, W. and Liu, Z., 2024. Theabrownins in dark tea form complexes with tea polysaccharide conjugates. Journal of the Science of Food and Agriculture, 104(10), pp.5799-5806. DOI: https://doi.org/10.1002/jsfa.13431

Dong, S., Wu, S., He, R., Hao, F., Xu, P., Cai, M., Yu, M., Zhong, R. and Fang, X., 2024. Improving quality profiles of summer-autumn tea through the synergistic fermentation with three fungal strains. Food Bioscience, 62, p.105453. DOI: https://doi.org/10.1016/j.fbio.2024.105453

Qu, F., Zeng, W., Tong, X., Feng, W., Chen, Y. and Ni, D., 2020. The new insight into the influence of fermentation temperature on quality and bioactivities of black tea. Lwt, 117, p.108646. DOI: https://doi.org/10.1016/j.lwt.2019.108646

Bo, B., Seong, H., Kim, G. and Han, N.S., 2022. Antioxidant and prebiotic activities of Laphet, fermented tea leaves in Myanmar, during in vitro gastrointestinal digestion and colonic fermentation. Journal of Functional Foods, 95, p.105193. DOI: https://doi.org/10.1016/j.jff.2022.105193

Wang, M., Yang, J., Li, J., Zhou, X., Xiao, Y., Liao, Y., Tang, J., Dong, F. and Zeng, L., 2022. Effects of temperature and light on quality-related metabolites in tea [Camellia sinensis (L.) Kuntze] leaves. Food research international, 161, p.111882. DOI: https://doi.org/10.1016/j.foodres.2022.111882

Erten, H., Agirman, B., Boyaci-Gunduz, C.P., Carsanba, E. and Leventdurur, S., 2019. Natural microflora of different types of foods. Health and Safety Aspects of Food Processing Technologies, pp.51-93. DOI: https://doi.org/10.1007/978-3-030-24903-8_4

Zhang, G., Yang, J., Cui, D., Zhao, D., Benedito, V.A. and Zhao, J., 2020. Genome-wide analysis and metabolic profiling unveil the role of peroxidase CsGPX3 in theaflavin production in black tea processing. Food Research International, 137, p.109677. DOI: https://doi.org/10.1016/j.foodres.2020.109677

Zhou, Y., He, Y. and Zhu, Z., 2023. Understanding of formation and change of chiral aroma compounds from tea leaf to tea cup provides essential information for tea quality improvement. Food Research International, 167, p.112703. DOI: https://doi.org/10.1016/j.foodres.2023.112703

Dartora, B., Hickert, L.R., Fabricio, M.F., Ayub, M.A.Z., Furlan, J.M., Wagner, R., Perez, K.J. and Sant'Anna, V., 2023. Understanding the effect of fermentation time on physicochemical characteristics, sensory attributes, and volatile compounds in green tea kombucha. Food Research International, 174, p.113569. DOI: https://doi.org/10.1016/j.foodres.2023.113569

Wei, Y., Wu, F., Xu, J., Sha, J., Zhao, Z., He, Y. and Li, X., 2019. Visual detection of the moisture content of tea leaves with hyperspectral imaging technology. Journal of Food Engineering, 248, pp.89-96. DOI: https://doi.org/10.1016/j.jfoodeng.2019.01.004

Bambil, D., Pistori, H., Bao, F., Weber, V., Alves, F.M., Gonçalves, E.G., de Alencar Figueiredo, L.F., Abreu, U.G., Arruda, R. and Bortolotto, I.M., 2020. Plant species identification using color learning resources, shape, texture, through machine learning and artificial neural networks. Environment Systems and Decisions, 40(4), pp.480-484. DOI: https://doi.org/10.1007/s10669-020-09769-w

Diez-Simon, C., Mumm, R. and Hall, R.D., 2019. Mass spectrometry-based metabolomics of volatiles as a new tool for understanding aroma and flavour chemistry in processed food products. Metabolomics, 15, pp.1-20. DOI: https://doi.org/10.1007/s11306-019-1493-6

Wei, Y., Wen, Y., Huang, X., Ma, P., Wang, L., Pan, Y., Lv, Y., Wang, H., Zhang, L., Wang, K. and Yang, X., 2024. The dawn of intelligent technologies in tea industry. Trends in Food Science & Technology, p.104337. DOI: https://doi.org/10.1016/j.tifs.2024.104337

Dubey, K.K., Janve, M., Ray, A. and Singhal, R.S., 2020. Ready-to-drink tea. Trends in non-alcoholic beverages, pp.101-140. DOI: https://doi.org/10.1016/B978-0-12-816938-4.00004-5

Li, T., Lu, C., Wei, Y., Zhang, J., Shao, A., Li, L., Wang, Y. and Ning, J., 2024. Chemical imaging for determining the distributions of quality components during the piling fermentation of Pu-erh tea. Food Control, 158, p.110234. DOI: https://doi.org/10.1016/j.foodcont.2023.110234

Chen, Z., He, L., Ye, Y., Chen, J., Sun, L., Wu, C., Chen, L. and Wang, R., 2020. Automatic sorting of fresh tea leaves using vision‐based recognition method. Journal of Food Process Engineering, 43(9), p.e13474. DOI: https://doi.org/10.1111/jfpe.13474

Mukhopadhyay, S., Paul, M., Pal, R. and De, D., 2021. Tea leaf disease detection using multi-objective image segmentation. Multimedia Tools and Applications, 80, pp.753-771. DOI: https://doi.org/10.1007/s11042-020-09567-1

Singh, S., Mittal, N., Singh, H. and Oliva, D., 2023. Improving the segmentation of digital images by using a modified Otsu’s between-class variance. Multimedia Tools and Applications, 82(26), pp.40701-40743. DOI: https://doi.org/10.1007/s11042-023-15129-y

Jianqiang, L., Haoxuan, L., Chaoran, Y., Xiao, L., Jiewei, H., Haiwei, W., Liang, W. and Caijuan, Y., 2024. Tea bud DG: A lightweight tea bud detection model based on dynamic detection head and adaptive loss function. Computers and Electronics in Agriculture, 227, p.109522. DOI: https://doi.org/10.1016/j.compag.2024.109522

Midhunraj, P.K., Thivya, K.S. and Anand, M., 2024. An analysis of plant diseases on detection and classification: from machine learning to deep learning techniques. Multimedia Tools and Applications, 83(16), pp.48659-48682. DOI: https://doi.org/10.1007/s11042-023-17600-2

Bouchene, M.M., 2024. Bayesian optimization of histogram of oriented gradients (HOG) parameters for facial recognition. The Journal of Supercomputing, pp.1-32. DOI: https://doi.org/10.2139/ssrn.4506361

Fan, X., Luo, P., Mu, Y., Zhou, R., Tjahjadi, T. and Ren, Y., 2022. Leaf image based plant disease identification using transfer learning and feature fusion. Computers and Electronics in agriculture, 196, p.106892. DOI: https://doi.org/10.1016/j.compag.2022.106892

Shewale, M.V. and Daruwala, R.D., 2023. High performance deep learning architecture for early detection and classification of plant leaf disease. Journal of Agriculture and Food Research, 14, p.100675. DOI: https://doi.org/10.1016/j.jafr.2023.100675

Zhang, L., Zou, L., Wu, C., Jia, J. and Chen, J., 2021. Method of famous tea sprout identification and segmentation based on improved watershed algorithm. Computers and Electronics in Agriculture, 184, p.106108. DOI: https://doi.org/10.1016/j.compag.2021.106108

Amean, Z.M., Low, T. and Hancock, N., 2021. Automatic leaf segmentation and overlapping leaf separation using stereo vision. Array, 12, p.100099. DOI: https://doi.org/10.1016/j.array.2021.100099

Wang, T., Zhang, K., Zhang, W., Wang, R., Wan, S., Rao, Y., Jiang, Z. and Gu, L., 2023. Tea picking point detection and location based on Mask-RCNN. Information Processing in Agriculture, 10(2), pp.267-275. DOI: https://doi.org/10.1016/j.inpa.2021.12.004

Hu, G., Wang, H., Zhang, Y. and Wan, M., 2021. Detection and severity analysis of tea leaf blight based on deep learning. Computers & Electrical Engineering, 90, p.107023. DOI: https://doi.org/10.1016/j.compeleceng.2021.107023

Hu, G., Li, S., Wan, M. and Bao, W., 2021. Semantic segmentation of tea geometrid in natural scene images using discriminative pyramid network. Applied Soft Computing, 113, p.107984. DOI: https://doi.org/10.1016/j.asoc.2021.107984

Gui, J., Wu, J., Wu, D., Chen, J. and Tong, J., 2024. A lightweight tea buds detection model with occlusion handling. Journal of Food Measurement and Characterization, 18(9), pp.7533-7549. DOI: https://doi.org/10.1007/s11694-024-02746-w

Deka, N. and Goswami, K., 2024. Analyzing alternative food networks in highly-globalised and standardised agrifood systems to attain sustainability for small-scale growers: inferences from tea sector. Local Environment, 29(3), pp.317-338. DOI: https://doi.org/10.1080/13549839.2024.2306599

Chen, P.A. and Lin, S.Y., 2025. Oolong tea: The plants, processing, manufacturing, and production. Tea in Health and Disease Prevention, pp.77-88. DOI: https://doi.org/10.1016/B978-0-443-14158-4.00076-2

Fang, X., Xue, R., Xiao, J., Pu, Q., Wang, Y., Yuan, Y., Liu, B., Sui, M., Jiang, G., Niaz, R. and Sun, Y., 2024. Effects of different fermentation modes on tea leaves: Revealing the metabolites modification by quasi-targeted metabolomics. Food Bioscience, 62, p.105223. DOI: https://doi.org/10.1016/j.fbio.2024.105223

An, T., Li, Y., Tian, X., Fan, S., Duan, D., Zhao, C., Huang, W. and Dong, C., 2022. Evaluation of aroma quality using multidimensional olfactory information during black tea fermentation. Sensors and Actuators B: Chemical, 371, p.132518. DOI: https://doi.org/10.1016/j.snb.2022.132518

Li, Y., Hao, J., Zhou, J., He, C., Yu, Z., Chen, S., Chen, Y. and Ni, D., 2022. Pile-fermentation of dark tea: Conditions optimization and quality formation mechanism. Lwt, 166, p.113753. DOI: https://doi.org/10.1016/j.lwt.2022.113753

Zhang, B., Li, Z., Song, F., Zhou, Q., Jin, G., Raghavan, V., Song, C. and Ling, C., 2023. Discrimination of black tea fermentation degree based on multi-data fusion of near-infrared spectroscopy and machine vision. Journal of Food Measurement and Characterization, 17(4), pp.4149-4160. DOI: https://doi.org/10.1007/s11694-023-01935-3

Zhu, F., Wang, J., Zhang, Y., Shi, J., He, M. and Zhao, Z., 2025. An improved 3D-SwinT-CNN network to evaluate the fermentation degree of black tea. Food Control, 167, p.110756. DOI: https://doi.org/10.1016/j.foodcont.2024.110756

Wang, X., Chen, H., Ji, R., Qin, H., Xu, Q., Wang, T., He, Y. and Huang, Z., 2024. Detection of Carmine in Black Tea Based on UV–Vis Absorption Spectroscopy and Machine Learning. Food Analytical Methods, pp.1-12. DOI: https://doi.org/10.1007/s12161-024-02705-7

Zhu, F., Yao, H., Shen, Y., Zhang, Y., Li, X., Shi, J. and Zhao, Z., 2025. Information fusion of hyperspectral imaging and self-developed electronic nose for evaluating the degree of black tea fermentation. Journal of Food Composition and Analysis, 137, p.106859. DOI: https://doi.org/10.1016/j.jfca.2024.106859

Zhao, S., Adade, S.Y.S.S., Wang, Z., Jiao, T., Ouyang, Q., Li, H. and Chen, Q., 2025. Deep learning and feature reconstruction assisted vis-NIR calibration method for on-line monitoring of key growth indicators during kombucha production. Food Chemistry, 463, p.141411. DOI: https://doi.org/10.1016/j.foodchem.2024.141411

Li, Q., Zhang, C., Wang, H., Chen, S., Liu, W., Li, Y. and Li, J., 2023. Machine learning technique combined with data fusion strategies: A tea grade discrimination platform. Industrial Crops and Products, 203, p.117127. DOI: https://doi.org/10.1016/j.indcrop.2023.117127

Li, L., Chen, Y., Dong, S., Shen, J., Cao, S., Cui, Q., Song, Y. and Ning, J., 2023. Rapid and comprehensive grade evaluation of Keemun black tea using efficient multidimensional data fusion. Food Chemistry: X, 20, p.100924. DOI: https://doi.org/10.1016/j.fochx.2023.100924

Dou, J., Yunus, A.P., Bui, D.T., Merghadi, A., Sahana, M., Zhu, Z., Chen, C.W., Han, Z. and Pham, B.T., 2020. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides, 17, pp.641-658. DOI: https://doi.org/10.1007/s10346-019-01286-5

Hua, J., Xu, Q., Yuan, H., Wang, J., Wu, Z., Li, X. and Jiang, Y., 2021. Effects of novel fermentation method on the biochemical components change and quality formation of Congou black tea. Journal of Food Composition and Analysis, 96, p.103751. DOI: https://doi.org/10.1016/j.jfca.2020.103751

Salman, S., Öz, G., Felek, R., Haznedar, A., Turna, T. and Özdemir, F., 2022. Effects of fermentation time on phenolic composition, antioxidant and antimicrobial activities of green, oolong, and black teas. Food Bioscience, 49, p.101884. DOI: https://doi.org/10.1016/j.fbio.2022.101884

Li, Y., Bai, R., Wang, J., Li, Y., Hu, Y., Ren, D., Dong, W. and Yi, L., 2022. Pear polyphenol oxidase enhances theaflavins in green tea soup through the enzymatic oxidation reaction. eFood, 3(5), p.e35. DOI: https://doi.org/10.1002/efd2.35

Feng, Z., Li, Y., Li, M., Wang, Y., Zhang, L., Wan, X. and Yang, X., 2019. Tea aroma formation from six model manufacturing processes. Food chemistry, 285, pp.347-354. DOI: https://doi.org/10.1016/j.foodchem.2019.01.174

Hoque, A., Padhiary, M., Prasad, G. and Tiwari, A., 2024. Optimization of Fermentation Time, Temperature, and Tea Bed Thickness in CFM to Enhance the Biological Composition of CTC Black Tea. Journal of The Institution of Engineers (India): Series A, pp.1-14. DOI: https://doi.org/10.1007/s40030-024-00853-x

Chen, X., Wang, P., Wei, M., Lin, X., Gu, M., Fang, W., Zheng, Y., Zhao, F., Jin, S. and Ye, N., 2022. Lipidomics analysis unravels changes from flavor precursors in different processing treatments of purple‐leaf tea. Journal of the Science of Food and Agriculture, 102(9), pp.3730-3741. DOI: https://doi.org/10.1002/jsfa.11721

Li, D., Dong, L., Li, J., Zhang, S., Lei, Y., Deng, M. and Li, J., 2022. Optimization of enzymatic synthesis of theaflavins from potato polyphenol oxidase. Bioprocess and Biosystems Engineering, 45(6), pp.1047-1055. DOI: https://doi.org/10.1007/s00449-022-02723-x

Wu, M., Liu, W. and Zheng, S., 2024. Probiotic fermentation environment control under intelligent data monitoring. SLAS technology, p.100153. DOI: https://doi.org/10.1016/j.slast.2024.100153

Sharmilan, T., Premarathne, I., Wanniarachchi, I., Kumari, S. and Wanniarachchi, D., 2022. Application of Electronic Nose to Predict the Optimum Fermentation Time for Low‐Country Sri Lankan Tea. Journal of Food Quality, 2022(1), p.7703352. DOI: https://doi.org/10.1155/2022/7703352

Jarboe, L.R., 2022. Progress and challenges for microbial fermentation processes within the biorefinery context. AZ of Biorefinery, pp.447-471. DOI: https://doi.org/10.1016/B978-0-12-819248-1.00019-1

Chen, Y., Guo, M., Chen, K., Jiang, X., Ding, Z., Zhang, H., Lu, M., Qi, D. and Dong, C., 2024. Predictive models for sensory score and physicochemical composition of Yuezhou Longjing tea using near-infrared spectroscopy and data fusion. Talanta, 273, p.125892. DOI: https://doi.org/10.1016/j.talanta.2024.125892

Sheng, X., Zan, J., Jiang, Y., Shen, S., Li, L. and Yuan, H., 2023. Data fusion strategy for rapid prediction of moisture content during drying of black tea based on micro-NIR spectroscopy and machine vision. Optik, 276, p.170645. DOI: https://doi.org/10.1016/j.ijleo.2023.170645

Chen, W., Chen, J., Pan, H., Ding, L., Ni, Z., Wang, Y. and Zhou, J., 2024. Dynamical Changes of Volatile Metabolites and Identification of Core Fungi Associated with Aroma Formation in Fu Brick Tea during the Fungal Fermentation. LWT, p.116298. DOI: https://doi.org/10.1016/j.lwt.2024.116298

Zhu, H., Liu, F., Ye, Y., Chen, L., Liu, J., Gui, A., Zhang, J. and Dong, C., 2019. Application of machine learning algorithms in quality assurance of fermentation process of black tea--based on electrical properties. Journal of food engineering, 263, pp.165-172. DOI: https://doi.org/10.1016/j.jfoodeng.2019.06.009

Lu, L., Wang, L., Liu, R., Zhang, Y., Zheng, X., Lu, J., Wang, X. and Ye, J., 2024. An efficient artificial intelligence algorithm for predicting the sensory quality of green and black teas based on the key chemical indices. Food Chemistry, 441, p.138341. DOI: https://doi.org/10.1016/j.foodchem.2023.138341

Li, X., Sanaeifar, A., Zhang, S., Zhan, Z. and He, Y., 2024. Recent Technological Advances in Tea Quality and Safety. Natural Products in Beverages: Botany, Phytochemistry, Pharmacology and Processing, pp.83-127. DOI: https://doi.org/10.1007/978-3-031-38663-3_35

Engelhardt, U.H., 2024. Different Types of Tea: Chemical Composition, Analytical Methods, and Authenticity. In Natural Products in Beverages: Botany, Phytochemistry, Pharmacology and Processing (pp. 39-82). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-031-38663-3_27

Ohwofasa, A., Dhami, M., Winefield, C. and On, S.L., 2024. Elevated abundance of Komagataeibacter results in a lower pH in kombucha production; insights from microbiomic and chemical analyses. Current Research in Food Science, 8, p.100694. DOI: https://doi.org/10.1016/j.crfs.2024.100694

Liu, Y., Chen, Q., Liu, D., Yang, L., Hu, W., Kuang, L., Huang, Y., Teng, J. and Liu, Y., 2023. Multi-omics and enzyme activity analysis of flavour substances formation: Major metabolic pathways alteration during Congou black tea processing. Food Chemistry, 403, p.134263. DOI: https://doi.org/10.1016/j.foodchem.2022.134263

L’heureux, A., Grolinger, K., Elyamany, H.F. and Capretz, M.A., 2017. Machine learning with big data: Challenges and approaches. Ieee Access, 5, pp.7776-7797. DOI: https://doi.org/10.1109/ACCESS.2017.2696365

Kumar, V., Bhat, S.A., Kumar, S., Verma, P., Badruddin, I.A., Américo-Pinheiro, J.H.P., Sathyamurthy, R. and Atabani, A.E., 2023. Tea byproducts biorefinery for bioenergy recovery and value-added products development: A step towards environmental sustainability. Fuel, 350, p.128811. DOI: https://doi.org/10.1016/j.fuel.2023.128811

Bagnulo, E., Strocchi, G., Bicchi, C. and Liberto, E., 2024. Industrial food quality and consumer choice: Artificial intelligence-based tools in the chemistry of sensory notes in comfort foods (coffee, cocoa and tea). Trends in Food Science & Technology, p.104415. DOI: https://doi.org/10.1016/j.tifs.2024.104415

Yadav, H., Singh, S. and Sinha, R., 2024. Fermentation Technology for Microbial Products and Their Process Optimization. In Industrial Microbiology and Biotechnology: A New Horizon of the Microbial World (pp. 35-64). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-97-6270-5_2

Negi, T., Kumar, Y., Sirohi, R., Singh, S., Tarafdar, A., Pareek, S., Awasthi, M.K. and Sagar, N.A., 2022. Advances in bioconversion of spent tea leaves to value-added products. Bioresource Technology, 346, p.126409. DOI: https://doi.org/10.1016/j.biortech.2021.126409

Downloads

Published

2024-06-30

How to Cite

Sulaikha, C. M., & SomaSundaram, A. (2024). CURRENT CHALLENGES, AND FUTURE OPPORTUNITIES FOR FERMENTED TEA LEAF SEGMENTATION, CLASSIFICATION, AND OPTIMIZATION. ShodhKosh: Journal of Visual and Performing Arts, 5(1), 1158–1175. https://doi.org/10.29121/shodhkosh.v5.i1.2024.3949