BIOMECHANICAL CHARACTERISTICS OF RACE WALKING: A THEMATIC REVIEW
DOI:
https://doi.org/10.29121/shodhkosh.v5.i6.2024.3207Keywords:
Kinematics, Biomechanics, Race WalkingAbstract [English]
Race walking, a competitive sport requiring continuous ground contact and strict adherence to technical rules, poses unique biomechanical challenges. This study investigates the lower-limb kinematics, ground reaction forces (GRFs), and flight time in elite race walkers to understand key performance factors. At heel strike, the ankle dorsiflexes, the knee fully extends, and the hip flexes, while the contralateral shoulder and ipsilateral elbow coordinate efficiently. Mid-stance involves knee hyperextension and pelvic adjustments to minimize vertical displacement of the center of mass. Toe-off highlights coordinated plantarflexion, knee flexion, and arm movements. Pelvic rotation and knee straightness play crucial roles in speed and efficiency, though measurement methods yield varying results. Flight time remains minimal, setting race walking apart from running. GRFs display distinct patterns influenced by speed. Insights from this analysis offer valuable information for optimizing performance, refining techniques, and minimizing injury risk in this highly technical and demanding sport
References
Alexander, R. M. (1989). Optimization and gaits in the locomotion of vertebrates. Physiological Reviews, 69, 1199–1227. DOI: https://doi.org/10.1152/physrev.1989.69.4.1199
Brisswalter, J., Fougeron, B., & Legros, P. (1996). Effect of three hours race walk on energy cost, cardiorespiratory parameters and stride duration in elite race walkers. International Journal of Sports Medicine, 17, 182–186. DOI: https://doi.org/10.1055/s-2007-972829
Brisswalter, J., Fougeron, B., & Legros, P. (1998). Variability in energy cost and walking gait during race walking in competitive walkers. Medicine and Science in Sports and Exercise, 30, 1451– 1455. DOI: https://doi.org/10.1097/00005768-199809000-00016
Cairns, M. A., Burdett, R. G., Pisciotta, J. C., & Simon, S. R. (1986). A biomechanical analysis of racewalking gait. Medicine and Science in Sports and Exercise, 18, 446–453. DOI: https://doi.org/10.1249/00005768-198608000-00015
Cavagna, G. A., & Franzetti, P. (1981). Mechanics of competition Walking. Journal of Physiology, 315, 243–251. DOI: https://doi.org/10.1113/jphysiol.1981.sp013745
De Angelis, M., & Menchinelli, C. (1992). Times of flight, frequency and length of stride in race walking. In R. Rodano, G. Ferrigno, & C. Santambrogio (Eds.), Proceedings of the X
Douglass, B. L., & Garrett, G. E. (1984). Biomechanics of elite junior race walkers. In J. Terauds, K. Barthels, E. Krieghbaum, R. Mann, & J. Crakes (Eds.), Proceedings of the II International Symposium on Biomechanics in Sports (pp. 91–96). Del Mar, CA: Academic.
Fenton, R. M. (1984). Race walking ground reaction forces. In J. Terauds, K. Barthels, E. Krieghbaum, R. Mann, & J. Crakes (Eds.), Proceedings of the II International Symposium on Biomechanics in Sports (pp. 61–70). Del Mar, CA: Academic.
Fields, K. B., Bloom, O. J., Priebe, D., & Foreman, B. (2005). Basic Biomechanics of the Lower Extremity [Review of Basic Biomechanics of the Lower Extremity]. Primary Care Clinics in Office Practice, 32(1), 245. Elsevier BV. DOI: https://doi.org/10.1016/j.pop.2004.11.006
Han, Y., & Wang, X. (2011). The biomechanical study of lower limb during human walking. In Y. Han & X. Wang, Science China Technological Sciences (Vol. 54, Issue 4, p. 983). Springer Science+Business Media. DOI: https://doi.org/10.1007/s11431-011-4318-z
Hanley, B. (2013). An analysis of pacing profiles of word-class racewalkers. International Journal of Sports Physiology and Performance, 8, 435–441. DOI: https://doi.org/10.1123/ijspp.8.4.435
Hanley, B., & Bissas, A. (2013). Analysis of lower limb internal kinetics and electromyography in elite race walking. Journal of Sports Sciences, 31, 1222–1232. doi:10.1080/02640414.2013.777763 DOI: https://doi.org/10.1080/02640414.2013.777763
Hanley, B., Bissas, A., & Drake, A. (2009). Angular kinematics in elite race walking performance. In B. Hanley, A. Bissas, & A. Drake, ISBS - Conference Proceedings Archive (Vol. 1, Issue 1).
Hanley, B., Bissas, A., & Drake, A. (2011a). Kinematic characteristics of elite men’s and women’s 20 km race walking and their variation during race. Sports Biomechanics, 10, 110–124. DOI: https://doi.org/10.1080/14763141.2011.569566
Hanley, B., Bissas, A., & Drake, A. (2011b). Kinematic characteristics of elite men’s 50 kmrace walking. European Journal of Sport Science, 13, 272–279. doi:10.1080/17461391.2011.630104 DOI: https://doi.org/10.1080/17461391.2011.630104
Ko, S., Stenholm, S., Metter, E. J., & Ferrucci, L. (2012). Age-associated gait patterns and the role of lower extremity strength – Results from the Baltimore Longitudinal Study of Aging. In S. Ko, S. Stenholm, E. J. Metter, & L. Ferrucci, Archives of Gerontology and Geriatrics (Vol. 55, Issue 2, p. 474). Elsevier BV. DOI: https://doi.org/10.1016/j.archger.2012.04.004
Milan: Edi-Ermes. Donà, G., Preatoni, E., Cobelli, C., Rodano, R., & Harrison, A. J. (2009). Application of functional principal component analysis in race walking: An emerging methodology. Sports Biomechanics, 8, 284–301. doi:10.1080/14763140903414425 DOI: https://doi.org/10.1080/14763140903414425
Murray, M. P., Guten, G., Mollinger, L., & Gardner, G. (1983). Kinematic and electromyographic patterns of Olympic race walkers. American Journal of Sport Medicine, 11, 68–74. DOI: https://doi.org/10.1177/036354658301100204
Neumann, H. F., Krug, J., & Gohlitz, D. (2006). Coordinative threshold in race walking. In H. Schwameder, G. Strutzenberger, V. Fastenbauer, S. Lindinger, & E. Müller (Eds.), Proceedings of the XXIV International Symposium on Biomechanics in Sports. Salzburg: University Press.
Padulo, J., Annino, G., D’Ottavio, S., Vernillo, G., Smith, L., Migliaccio, G. M., & Tihanyi, J. (2013). Footstep analysis at different slopes and speeds in elite racewalking. Journal of Strength and Conditioning Research, 27, 125–129. doi:10.1519/ JSC.0b013e3182541eb3 DOI: https://doi.org/10.1519/JSC.0b013e3182541eb3
Pavei, G., Cazzola, D., La Torre, A., &Minetti, A. E. (2012). Body center of mass trajectory shows how race walkers elude “Froude law”. In R. Meeusen, J. Duchateau, B. Roelands, M. Klass, B. De Geus, S. Baudry, & E. Tsolakidis (Eds.), Book of abstracts of the 17th Annual Congress of the European College of Sport Science (p. 42). Bruges: European College of Sport Science.
Payne, A. H. (1978). A comparison of the ground forces in race walking with those in normal walking and running. In E. Asmussen & K. Jorgensen (Eds.), Biomechanics VI-A (pp. 293– 302). Baltimore, MD: University Park Press.
Phillips, S. J., & Jensen, J. L. (1984). Kinematics of race walking. In J. Terauds, K. Barthels, E. Krieghbaum, R. Mann, & J. Crakes (Eds.), Proceedings of the II International Symposium on Biomechanics in Sports (pp. 71–80). Del Mar, CA: Academic.
Preatoni, E., Ferrario, M., Donà, G., Hamill, J., & Rodano, R. (2010). Motor variability in sports: A non-linear analysis of race walking. Journal of Sports Science, 28, 1327–1336. doi:10.1080/ 02640414.2010.507250 DOI: https://doi.org/10.1080/02640414.2010.507250
Preatoni, E., La Torre, A., Santambrogio, G. C., & Rodano, R. (2010). Motion analysis in sports monitoring techniques: assessment protocols and application to race walking. Medicina dello Sport, 63, 327–342
Rodano, R., & Santambrogio, G. C. (1987). Quantitative analysis of locomotor performance in different race walkers. In: L. Tsarouchas, J. Terauds, B. A. Gowitzke, & L. E. Holt (Eds.), Proceedings of the V International Symposium in Sports (pp. 122– 134). Athens: University of Athens.
Segers, V., Lenoir, M., Aerts, P., & Clercq, D. D. (2006). Kinematics of the transition between walking and running when gradually changing speed. In V. Segers, M. Lenoir, P. Aerts, & D. D. Clercq, Gait & Posture (Vol. 26, Issue 3, p. 349). Elsevier BV. DOI: https://doi.org/10.1016/j.gaitpost.2006.10.013
Shi, P., & Yu, H. (2016). Walking patterns of knee and ankle joints during level walking and uphill walking. DOI: https://doi.org/10.1109/SIPROCESS.2016.7888223
White, S. C., & Winter, D. (1985). Mechanical power analysis of the lower limb musculature in race walking. International Journal of Sport Biomechanics, 1, 15–24. DOI: https://doi.org/10.1123/ijsb.1.1.15
Winter, D. A. (1979). A new definition of mechanical work done in human movement. Journal of Applied Physiology, 46, 79–83. DOI: https://doi.org/10.1152/jappl.1979.46.1.79
Witt M., & Gohlitz, D. (2008). Changes in race walking style followed by application of additional loads. In Y. H. Kwon, J. Shim, J. K. Shim, & I. S. Shin (Eds.), Proceedings of the XXVI International Symposium on Biomechanics in Sports (pp. 604–607). Korea: Seoul National University.
Yang, X., Zhao, G., Liu, D., Zhou, W., & Zhao, H. (2015). Biomechanics analysis of human walking with load carriage. In X. Yang, G. Zhao, D. Liu, W. Zhou, & H. Zhao, Technology and Health Care (Vol. 23). IOS Press. DOI: https://doi.org/10.3233/THC-150995
Zee, T. J. van der, Mundinger, E., & Kuo, A. D. (2022). A biomechanics dataset of healthy human walking at various speeds, step lengths and step widths. In T. J. van der Zee, E. Mundinger, & A. D. Kuo, Scientific Data (Vol. 9, Issue 1). Nature Portfolio. DOI: https://doi.org/10.1038/s41597-022-01817-1
Zhang, D., & Cai, X. (2000). Analysis of lower limb movement in elite female race walkers under new rules. In Y. Hong & D. P. Johns (Eds.), Proceedings of the XVIII International Symposium on Biomechanics in Sports (pp. 1009–1010). Hong Kong: University of Hong Kong
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Anita Pharswan, Joseph Singh

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.












