EXISTENCE OF FIXED POINT VIA SELF-MAPPING OF ENRICHED Gb-CONTRACTION IN Gb-METRIC SPACES
DOI:
https://doi.org/10.29121/shodhkosh.v5.i6.2024.2821Abstract [English]
In the present work we show here, we prove some fixed point results on enriched G_b-complete metric space for a novel contraction and produce some enriching fixed point results utilising Banach G_b-contraction enriching G_b-metric spaces. The suggested results compile a few earlier findings based on G_b-metric space.
References
Aghajani, A., Abbas, M., Roshan, J. R. (2014). Common fixed point of generalized weak contractive mappings in partially ordered G_b-metric spaces, Filomat, 28(6), 1087-1101. DOI: https://doi.org/10.2298/FIL1406087A
Aydi, H., Rakic, D., Aghajani, A., Dosenovic, T., Noorani, M. S and Qawaqneh, H. (2019). On fixed point results in G_b-metric spaces. Mathematics, 7,617.1-19. DOI: https://doi.org/10.3390/math7070617
Aydi, H., Shatanawi, W, Vetro, C. (2011) on genreralized weak G-contraction mapping in G-metric spaces. Comput.Math Appl. 62,4223-4229. DOI: https://doi.org/10.1016/j.camwa.2011.10.007
Czerwik, S. (1993). Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1, 5-11.
Dhage, B. C. (1992) “Generalized metric spaces and mappings with fixed point,” Bulletin of the Calcutta Mathematical society, vol.84,no.4,pp.329-336.
Li, C and Cui, Y. (2022) Rectangular G_b-metric spaces and some fixed point theorems; Axioms, 11(108). DOI: https://doi.org/10.3390/axioms11030108
Mohanta K.S., (2012). Some fixed point Theorems in G-metric spaces, Vol.20(1),285-306. DOI: https://doi.org/10.2478/v10309-012-0019-2
Mustafa Z. and Sims, B. (2009) Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed point Theory and Applications, vol.17,10 pages. DOI: https://doi.org/10.1155/2009/917175
Mustafa, Z., Roshan, J.R and Parvaneh, V. (2013) Coupled coincidence point results for (ψ,φ) -weakly contractive mappings in partially ordered G_b-metric spaces, Fixed Point Theory Appl. 206. DOI: https://doi.org/10.1186/1687-1812-2013-206
Mustafa, Z., Roshan, J. R and Parvaneh, V. (2013) Existence of a tripled coincidence point in ordered G_b-metric spaces and applications to a system of integral equations, Journal of Inequalities and Applications, 453. DOI: https://doi.org/10.1186/1029-242X-2013-453
Mustafa, Z., Roshan, J. R., Parvaneh, V and Kadelburg. Z. (2014) Fixed point theorems for Weakly T-Chatterjea and weakly T-Kannan contractions in b-metric spaces, J. of Inequalities and Applications 46. DOI: https://doi.org/10.1186/1029-242X-2014-46
Mustafa Z. and Sims, B. (2006). A new approach to generalized metric spaces, J. Nonlinear and convex Analysis, 7; 289-297.
Mebadondu, A.A and Mewomo, O.T. (2021). Suzaki-type fixed point results in G_b-metric spaces. Asian-European Journal of mathematics, Vol. 14, No, 05. DOI: https://doi.org/10.1142/S1793557121500704
Shatanawi, W. (2010). Fixed point theorems for contractive mappings satisfying ϕ-maps in G-metric spaces, Fixed point Theory and Applications, vol. 17,10 pages. DOI: https://doi.org/10.1155/2010/181650
Shatanawi, W. (2011). Some fixed point theorems in ordered G-metric spaces and applications, Abstr. Appl. Anal. Articcle ID 126205. DOI: https://doi.org/10.1186/1687-1812-2011-68
Samet, B, Vetro, C, Vetro, F. (2013). Remarks on G-metric spaces, Int. J. Anal DOI: https://doi.org/10.1186/1687-1812-2013-5
Sarwar, M., Abdullah, S and Shah, I.A. (2020). Fixed point theorem satisfying some rational type contraction in G_b-metric spaces, J. Adv. Math. Stud. 9 (2). 320-329.
Jaradat, M.M.M., Mustafa, Z., Arshad, M., Ullah Khan, S. and Ahmad, J. (2017) Some fixed point results on G-metric and G_b-metric spaces, Demonstration Mathematica, 50;190– 207. DOI: https://doi.org/10.1515/dema-2017-0018
Jleli, M., Samet, B. (2012) Remarks on G- metric spaces and fixed point theorems. Fixed point Theory Appl. Article ID 210. DOI: https://doi.org/10.1186/1687-1812-2012-210
Karapinar, E., Agarwal, R.P. (2013). Further fixed point results on G-metric spaces Fixed point Theory and Appl. 1(154). DOI: https://doi.org/10.1186/1687-1812-2013-154
Khomdram, B., Rohen, Y. Singh, T.C. (2016) Coupled fixed point theorems in G_b-metric space satisfying some rational contractive conditions. Springer Plus, 5,1261. DOI: https://doi.org/10.1186/s40064-016-2925-7
Abid Khan, Santosh Sharma, Giriraj Verma, Ramakant Bhardwaj, et.al. (2022) “Fixed Point Results in b-Metric Spaces Over Banach Algebra and Contraction Principle” Recent Trends in Design, Materials and Manufacturing pp 15–21, Online ISBN,978-981-16-4083-4, Part of the Lecture Notes in Mechanical Engineering book series (LNME) By Springer doi.org/10.1007/978-981-16-4083-4_2 DOI: https://doi.org/10.1007/978-981-16-4083-4_2
Ramakant Bhardwaj, S. S. Rajput, R.N. Yadav(2007), “Application of fixed point theory in metric spaces” Thai Journal of Mathematics, Vol 5 ,No 2, 253-259 |ISSN 1686-0209
Ramakant Bhardwaj (2022) “Fixed Point results in Compact Rough Metric spaces”, International Journal of Emerging Technology and Advanced Engineering, Volume 12, Issue 03, March 22), 107-110, DOI: 10.46338/ijetae0322. DOI: https://doi.org/10.46338/ijetae0322_12
Singh, U., Singh, N., Singh, R., & Bhardwaj, R. (2022). Common Invariant Point Theorem for Multi-valued Generalized Fuzzy Mapping in b-Metric Space. In Recent Trends in Design, Materials and Manufacturing: Selected Proceedings of ICRADMM 2020 (pp. 23-35). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-16-4083-4_3
Sonam, Bhardwaj, R., & Narayan, S. (2023). Fixed point results in soft fuzzy metric spaces. Mathematics, 11(14), 3189. DOI: https://doi.org/10.3390/math11143189
Sonam, Vandana Rathore, Amita Pal, Ramakant Bhardwaj, Satyendra Narayan (2023), ‘Fixed-Point Results for Mappings Satisfying Implicit Relation in Orthogonal Fuzzy Metric Spaces”, Advances in Fuzzy Systems Volume 2023, Article ID 5037401, 8 pages https://doi.org/10.1155/2023/5037401 DOI: https://doi.org/10.1155/2023/5037401
Sharad Gupta, Ramakant Bhardwaj, Wadkar Balaji Raghunath Rao, Rakesh Mohan Sharraf,(2020) “ fixed point theorems in fuzzy metric spaces” Materials Today Proceedings 29 P2,611-616. DOI: https://doi.org/10.1016/j.matpr.2020.07.322
Sewani, Godavari A.D. Singh, Ruchi Singh, Ramakant Bhardwaj (2022) “Generalized Intuitionistic Fuzzy b-Metric Space” ECS Transactions, 107 (1) 12415-12434, Doi 10.1149/10701.12415ecst DOI: https://doi.org/10.1149/10701.12415ecst
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Abid Khan, Santosh Kumar Sharma, Girraj Kumar Verma, Ramakant Bhardwaj, Umashankar Sharma

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.