EXISTENCE OF FIXED POINT VIA SELF-MAPPING OF ENRICHED Gb-CONTRACTION IN Gb-METRIC SPACES

Authors

  • Abid Khan Department of Applied Mathematics, Amity University Madhya Pradesh, Gwalior (MP), India
  • Santosh Kumar Sharma Department of Applied Mathematics, Amity University Madhya Pradesh, Gwalior ( MP), India
  • Girraj Kumar Verma Department of Applied Mathematics, Amity University Madhya Pradesh, Gwalior ( MP), India
  • Ramakant Bhardwaj Department of Mathematics, Amity University Kolkata, West Bengal, India
  • Umashankar Sharma Department of Physics, RJIT BSF Tekanpur, MP, India

DOI:

https://doi.org/10.29121/shodhkosh.v5.i6.2024.2821

Abstract [English]

In the present work we show here, we prove some fixed point results on enriched G_b-complete metric space for a novel contraction and produce some enriching fixed point results utilising Banach G_b-contraction enriching G_b-metric spaces. The suggested results compile a few earlier findings based on G_b-metric space.

References

Aghajani, A., Abbas, M., Roshan, J. R. (2014). Common fixed point of generalized weak contractive mappings in partially ordered G_b-metric spaces, Filomat, 28(6), 1087-1101. DOI: https://doi.org/10.2298/FIL1406087A

Aydi, H., Rakic, D., Aghajani, A., Dosenovic, T., Noorani, M. S and Qawaqneh, H. (2019). On fixed point results in G_b-metric spaces. Mathematics, 7,617.1-19. DOI: https://doi.org/10.3390/math7070617

Aydi, H., Shatanawi, W, Vetro, C. (2011) on genreralized weak G-contraction mapping in G-metric spaces. Comput.Math Appl. 62,4223-4229. DOI: https://doi.org/10.1016/j.camwa.2011.10.007

Czerwik, S. (1993). Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1, 5-11.

Dhage, B. C. (1992) “Generalized metric spaces and mappings with fixed point,” Bulletin of the Calcutta Mathematical society, vol.84,no.4,pp.329-336.

Li, C and Cui, Y. (2022) Rectangular G_b-metric spaces and some fixed point theorems; Axioms, 11(108). DOI: https://doi.org/10.3390/axioms11030108

Mohanta K.S., (2012). Some fixed point Theorems in G-metric spaces, Vol.20(1),285-306. DOI: https://doi.org/10.2478/v10309-012-0019-2

Mustafa Z. and Sims, B. (2009) Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed point Theory and Applications, vol.17,10 pages. DOI: https://doi.org/10.1155/2009/917175

Mustafa, Z., Roshan, J.R and Parvaneh, V. (2013) Coupled coincidence point results for (ψ,φ) -weakly contractive mappings in partially ordered G_b-metric spaces, Fixed Point Theory Appl. 206. DOI: https://doi.org/10.1186/1687-1812-2013-206

Mustafa, Z., Roshan, J. R and Parvaneh, V. (2013) Existence of a tripled coincidence point in ordered G_b-metric spaces and applications to a system of integral equations, Journal of Inequalities and Applications, 453. DOI: https://doi.org/10.1186/1029-242X-2013-453

Mustafa, Z., Roshan, J. R., Parvaneh, V and Kadelburg. Z. (2014) Fixed point theorems for Weakly T-Chatterjea and weakly T-Kannan contractions in b-metric spaces, J. of Inequalities and Applications 46. DOI: https://doi.org/10.1186/1029-242X-2014-46

Mustafa Z. and Sims, B. (2006). A new approach to generalized metric spaces, J. Nonlinear and convex Analysis, 7; 289-297.

Mebadondu, A.A and Mewomo, O.T. (2021). Suzaki-type fixed point results in G_b-metric spaces. Asian-European Journal of mathematics, Vol. 14, No, 05. DOI: https://doi.org/10.1142/S1793557121500704

Shatanawi, W. (2010). Fixed point theorems for contractive mappings satisfying ϕ-maps in G-metric spaces, Fixed point Theory and Applications, vol. 17,10 pages. DOI: https://doi.org/10.1155/2010/181650

Shatanawi, W. (2011). Some fixed point theorems in ordered G-metric spaces and applications, Abstr. Appl. Anal. Articcle ID 126205. DOI: https://doi.org/10.1186/1687-1812-2011-68

Samet, B, Vetro, C, Vetro, F. (2013). Remarks on G-metric spaces, Int. J. Anal DOI: https://doi.org/10.1186/1687-1812-2013-5

Sarwar, M., Abdullah, S and Shah, I.A. (2020). Fixed point theorem satisfying some rational type contraction in G_b-metric spaces, J. Adv. Math. Stud. 9 (2). 320-329.

Jaradat, M.M.M., Mustafa, Z., Arshad, M., Ullah Khan, S. and Ahmad, J. (2017) Some fixed point results on G-metric and G_b-metric spaces, Demonstration Mathematica, 50;190– 207. DOI: https://doi.org/10.1515/dema-2017-0018

Jleli, M., Samet, B. (2012) Remarks on G- metric spaces and fixed point theorems. Fixed point Theory Appl. Article ID 210. DOI: https://doi.org/10.1186/1687-1812-2012-210

Karapinar, E., Agarwal, R.P. (2013). Further fixed point results on G-metric spaces Fixed point Theory and Appl. 1(154). DOI: https://doi.org/10.1186/1687-1812-2013-154

Khomdram, B., Rohen, Y. Singh, T.C. (2016) Coupled fixed point theorems in G_b-metric space satisfying some rational contractive conditions. Springer Plus, 5,1261. DOI: https://doi.org/10.1186/s40064-016-2925-7

Abid Khan, Santosh Sharma, Giriraj Verma, Ramakant Bhardwaj, et.al. (2022) “Fixed Point Results in b-Metric Spaces Over Banach Algebra and Contraction Principle” Recent Trends in Design, Materials and Manufacturing pp 15–21, Online ISBN,978-981-16-4083-4, Part of the Lecture Notes in Mechanical Engineering book series (LNME) By Springer doi.org/10.1007/978-981-16-4083-4_2 DOI: https://doi.org/10.1007/978-981-16-4083-4_2

Ramakant Bhardwaj, S. S. Rajput, R.N. Yadav(2007), “Application of fixed point theory in metric spaces” Thai Journal of Mathematics, Vol 5 ,No 2, 253-259 |ISSN 1686-0209

Ramakant Bhardwaj (2022) “Fixed Point results in Compact Rough Metric spaces”, International Journal of Emerging Technology and Advanced Engineering, Volume 12, Issue 03, March 22), 107-110, DOI: 10.46338/ijetae0322. DOI: https://doi.org/10.46338/ijetae0322_12

Singh, U., Singh, N., Singh, R., & Bhardwaj, R. (2022). Common Invariant Point Theorem for Multi-valued Generalized Fuzzy Mapping in b-Metric Space. In Recent Trends in Design, Materials and Manufacturing: Selected Proceedings of ICRADMM 2020 (pp. 23-35). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-16-4083-4_3

Sonam, Bhardwaj, R., & Narayan, S. (2023). Fixed point results in soft fuzzy metric spaces. Mathematics, 11(14), 3189. DOI: https://doi.org/10.3390/math11143189

Sonam, Vandana Rathore, Amita Pal, Ramakant Bhardwaj, Satyendra Narayan (2023), ‘Fixed-Point Results for Mappings Satisfying Implicit Relation in Orthogonal Fuzzy Metric Spaces”, Advances in Fuzzy Systems Volume 2023, Article ID 5037401, 8 pages https://doi.org/10.1155/2023/5037401 DOI: https://doi.org/10.1155/2023/5037401

Sharad Gupta, Ramakant Bhardwaj, Wadkar Balaji Raghunath Rao, Rakesh Mohan Sharraf,(2020) “ fixed point theorems in fuzzy metric spaces” Materials Today Proceedings 29 P2,611-616. DOI: https://doi.org/10.1016/j.matpr.2020.07.322

Sewani, Godavari A.D. Singh, Ruchi Singh, Ramakant Bhardwaj (2022) “Generalized Intuitionistic Fuzzy b-Metric Space” ECS Transactions, 107 (1) 12415-12434, Doi 10.1149/10701.12415ecst DOI: https://doi.org/10.1149/10701.12415ecst

Downloads

Published

2024-06-30

How to Cite

Khan, A., Sharma, S. K., Verma, G. K., Bhardwaj, R., & Sharma, U. (2024). EXISTENCE OF FIXED POINT VIA SELF-MAPPING OF ENRICHED Gb-CONTRACTION IN Gb-METRIC SPACES. ShodhKosh: Journal of Visual and Performing Arts, 5(6), 2134–2140. https://doi.org/10.29121/shodhkosh.v5.i6.2024.2821