AN IMPROVED EDAS METHOD BASED ON TRAPEZOIDAL NEUTROSOPHIC NUMBER AND ITS APPLICATION IN GROUP DECISION MAKING

Authors

  • Mythili T. Research Scholar, Department of Mathematics, Sri Krishna Arts and Science College, Coimbatore, Tamil Nadu, India.
  • V. Jeyanthi Assistant Professor, Department of Mathematics, Sri Krishna Arts and Science College, Coimbatore, Tamil Nadu, India.

DOI:

https://doi.org/10.29121/shodhkosh.v5.i1.2024.2738

Keywords:

TNNs, Score Function, Trapezoidal Neutrosophic Number Weighted Arithmetic AV, Eraging Operator, Trapezoidal Neutrosophic Number Weighted Geometric Averaging Operator, Multiple, Criteria Group Decision-Making, AMS Subject Classification: 90C90,68T37,03E72

Abstract [English]

The trapezoidal neutrosophic set is a useful tool for dealing with vague, complex, and uncertain information. In this study, the authors enhanced the original EDAS (Evaluation Based on Distance from Average Solution) method by incorporating trapezoidal neutrosophic numbers (TNNs) to solving a multiple-criteria group decision-making (MCGDM) problem. They calculated the average solution for each criteria using two existing aggregation operators of TNNs. After that, they determined the positive and negative distances of every alternative from the average ideal solution and calculated these appraisal scores for the alternatives. Us- ing these scores, they ranked the alternatives. At last, the authors illustrated the practicality, stability, along with the effectiveness made of the improved EDAS method by analyzing the influence of various parameters.

References

Abdel-Basset, M., Gamal, A., Chakrabortty, R. K., & Ryan, M. (2021). Development of a hybrid multi-criteria decision-making approach for sustainability evaluation of bioen- ergy production technologies: A case study. Journal of Cleaner Production, 290, 125805. [CrossRef] DOI: https://doi.org/10.1016/j.jclepro.2021.125805

Asante, D., He, Z., Adjei, N. O., & Asante, B. (2020). Exploring the barriers to renewable energy adoption utilizing MULTIMOORA-EDAS method. Energy Policy, 142, 111479. [CrossRef] DOI: https://doi.org/10.1016/j.enpol.2020.111479

Ecer, F. (2018). Third-party logistics (3PLs) provider selection via Fuzzy AHP and EDAS integrated model. Technological and Economic Development of Economy, 24(2), 615–634. [CrossRef] DOI: https://doi.org/10.3846/20294913.2016.1213207

Fan, J.-P., Cheng, R., & Wu, M.-Q. (2019). Extended EDAS methods for multi-criteria group decision-making based on IV-CFSWAA and IV-CFSWGA operators with interval- valued complex fuzzy soft information. IEEE Access, 7, 105546–105561. [CrossRef] DOI: https://doi.org/10.1109/ACCESS.2019.2932267

Fan, J., Jia, X., & Wu, M. (2020). A new multi-criteria group decision model based on single-valued triangular neutrosophic sets and EDAS method. Journal of Intelligent & Fuzzy Systems, 38, 2089–2102. [CrossRef] DOI: https://doi.org/10.3233/JIFS-190811

Ghorabaee, M. K., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2017). A new multi-criteria model based on interval type-2 fuzzy sets and EDAS method for supplier evaluation and order allocation with environmental considerations. Computers & Industrial Engineering, 112, 156–174. [CrossRef] DOI: https://doi.org/10.1016/j.cie.2017.08.017

Ghorabaee, M. K., Zavadskas, E. K., Amiri, M., & Turskis, Z. (2016). Extended EDAS method for fuzzy multi-criteria decision-making: An application to supplier selection. In- ternational Journal of Computational Communication and Control, 11, 358–371. [Cross- Ref] DOI: https://doi.org/10.15837/ijccc.2016.3.2557

Ghorabaee, M. K., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria in- ventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26, 435–451. [CrossRef] DOI: https://doi.org/10.15388/Informatica.2015.57

Han, L., & Wei, C. (2020). An extended EDAS method for multicriteria decision-making based on multivalued neutrosophic sets. Complexity, 2020, 1–9. [CrossRef] DOI: https://doi.org/10.1155/2020/7578507

Hou, W.-H., Wang, X.-K., Zhang, H.-Y., Wang, J.-Q., & Li, L. (2021). Safety risk assess- ment of metro construction under epistemic uncertainty: An integrated framework using credal networks and the EDAS method. Applied Soft Computing, 108, 107436. [CrossRef] DOI: https://doi.org/10.1016/j.asoc.2021.107436

Irvanizam, I., Syahrini, I., Zi, N. N., Azzahra, N., Iqbal, M., Marzuki, M., & Subianto, M. (2021). An improved EDAS method based on bipolar neutrosophic set and its application in group decision-making. Volume 2021. DOI: https://doi.org/10.1155/2021/1474629

Jaukovic´-Jocic´, K., Karabasˇevic´, D., & Popovic´, G. (2020). An approach for e-learning courses evaluation based on the EDAS method. Ekonomika, 66, 47–59. [CrossRef] DOI: https://doi.org/10.5937/ekonomika2004047J

Kahraman, C., Keshavarz-Ghorabaee, M., Zavadskas, E. K., Onar, S. C., Yazdani, M., & Oztaysi, B. (2017). Intuitionistic fuzzy EDAS method: An application to solid waste dis- posal site selection. Journal of Environmental Engineering and Landscape Management, 25(1), 1–12. [CrossRef] DOI: https://doi.org/10.3846/16486897.2017.1281139

Karas¸an, A., & Kahraman, C. (2017). Interval-valued neutrosophic extension of EDAS method. In Advances in Fuzzy Logic and Technology (pp. 343–357). Springer. [CrossRef] DOI: https://doi.org/10.1007/978-3-319-66824-6_31

Keshavarz Ghorabaee, M., Zavadskas, E. K., Amiri, M., & Antucheviciene, J. (2016). Evaluation by an area-based method of ranking interval type-2 fuzzy sets (EAMRIT-2F) for multi-criteria group decision-making. Transformations in Business & Economics, 15, 76–95.

Li, Y.-Y., Wang, J.-Q., & Wang, T.-L. (2019). A linguistic neutrosophic multi-criteria group decision-making approach with EDAS method. Arabian Journal for Science and Engineering, 44, 2737–2749. [CrossRef] DOI: https://doi.org/10.1007/s13369-018-3487-5

Li, Z., Wei, G., Wang, R., Wu, J., Wei, C., & Wei, Y. (2020). EDAS method for multiple attribute group decision making under q-rung orthopair fuzzy environment. Technological and Economic Development of Economy, 26, 86–102. [CrossRef] DOI: https://doi.org/10.3846/tede.2019.11333

O¨ zc¸elik, G., & Nalkıran, M. (2021). An extension of EDAS method equipped with trape- zoidal bipolar fuzzy information: An application from the healthcare system. Interna- tional Journal of Fuzzy Systems. [CrossRef] DOI: https://doi.org/10.1007/s40815-021-01110-0

Peng, X., Dai, J., & Yuan, H. (2017). Interval-valued fuzzy soft decision-making meth- ods based on MABAC, similarity measure, and EDAS. Fundamenta Informaticae, 152, 373–396. [CrossRef] DOI: https://doi.org/10.3233/FI-2017-1525

Peng, X., & Dai, J. (2017). Algorithms for interval neutrosophic multiple attribute decision-making based on MABAC, similarity measure, and EDAS. International Jour- nal of Uncertainty, Fuzziness and Knowledge-Based Systems, 7, 395–421. [CrossRef] DOI: https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017020416

Rashid, T., Ali, A., & Chu, Y.-M. (2021). Hybrid BW-EDAS MCDM methodology for optimal industrial robot selection. PLoS ONE, 16, e0246738. [CrossRef] DOI: https://doi.org/10.1371/journal.pone.0246738

Stanujkic, D., Zavadskas, E. K., Ghorabaee, M. K., & Turskis, Z. (2017). An extension of the EDAS method based on the use of interval grey numbers. Studia Informatica Control, 26, 5–12. [CrossRef] DOI: https://doi.org/10.24846/v26i1y201701

Stevic´, Zˇ ., Pamucˇar, D., Vasiljevic´, M., Stojic´, G., & Korica, S. (2017). Novel integrated multi-criteria model for supplier selection: Case study construction company. Symmetry, 9, 279. [CrossRef] DOI: https://doi.org/10.3390/sym9110279

Tan, R.-P., & Zhang, W.-D. (2021). Decision-making method based on new entropy and refined single-valued neutrosophic sets and its application in typhoon disaster assessment. Applied Intelligence, 51, 283–307. [CrossRef] DOI: https://doi.org/10.1007/s10489-020-01706-3

Wang, P., Wang, J., & Wei, G. (2019). EDAS method for multiple criteria group decision making under 2-tuple linguistic neutrosophic environment. Journal of Intelligent & Fuzzy Systems, 37, 1597–1608. [CrossRef] DOI: https://doi.org/10.3233/JIFS-179223

Xu, D., Cui, X., & Xian, H. (2020). An extended EDAS method with a single-valued complex neutrosophic set and its application in green supplier selection. Mathematics, 8, DOI: https://doi.org/10.3390/math8020282

[CrossRef]

Zavadskas, E. K., Stevic´, Zˇ ., Turskis, Z., & Tomasˇevic´, M. (2019). A novel extended EDAS in Minkowski space (EDAS-M) method for evaluating autonomous vehicles. Stu- dia Informatica Control, 28, 255–264. [CrossRef] DOI: https://doi.org/10.24846/v28i3y201902

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X

Downloads

Published

2024-06-30

How to Cite

T., M., & V., J. (2024). AN IMPROVED EDAS METHOD BASED ON TRAPEZOIDAL NEUTROSOPHIC NUMBER AND ITS APPLICATION IN GROUP DECISION MAKING. ShodhKosh: Journal of Visual and Performing Arts, 5(1), 2640–2655. https://doi.org/10.29121/shodhkosh.v5.i1.2024.2738