GRAPH COLORING ALGORITHM FOR COURSE TIME TABLE SCHEDULING PROBLEM
DOI:
https://doi.org/10.29121/shodhkosh.v5.i3.2024.2182Keywords:
Welch Powel, Saturated Degree, Graph ColoringAbstract [English]
The purpose of this paper is to prepare a course time table by introducing a proposed algorithm based on known heuristic graph coloring algorithms, namely the Welch Powel algorithm and the saturation degree ordering algorithm, which found a better and optimal solution. The proposed algorithm will be used to solve the course time table scheduling problem which is formulated by converting the problem into a graph where subjects will be concede as vertices of graph.
References
Welch, D. J., & Powel, M. B. (1967). “An upper bound for the chromatic number of a graph and its application to timetabling problems”. The Computer Journal, vol.10(1),pp. 85-86. DOI: https://doi.org/10.1093/comjnl/10.1.85
Mansuri A., Gupta V. and Chandel R.S.(2010) “Coloring Programs in Graph Theory” International Journal of Math. Analysis, Vol. 4,pp. 2473 - 2479
Dahlan Abdullah (2019 )“Lecture Scheduling System Using Welch Powell Graph Coloring Algorithm in Informatics Engineering Departement of Universitas Malikussale” Journal ofPhysics: Conference Series 1363 012074 DOI: https://doi.org/10.1088/1742-6596/1363/1/012074
Peck, J. E. L., Williams, M. R.(1966).“Examination Scheduling,” Communications of the ACM, 9(6), pp.433-434. DOI: https://doi.org/10.1145/365696.365713
Wood, D. C.(1969). “A Technique for Coloring a Graph Applicable to Large Scale Timetabling Problems,” The Computer Journal, 12, pp. 317-319. DOI: https://doi.org/10.1093/comjnl/12.4.317
Johnson, D. S., Aragon, C. R., McGeoch, L. A., and Schevon, C. (1991) “Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning,” Operations Research, 39(3), pp. 378-406.,The IBM Research Symposia Series, New York, NY: Plenum Press, 1972, pp. 85-103
Kiaer, L., Yellen, J. (1992). “Weighted Graphs and University Timetabling”Computers and Operations Research, 19(1), pp. 59-67. DOI: https://doi.org/10.1016/0305-0548(92)90059-E
Méndez Díaz, I., Zabala, P. (2008). A cutting plane algorithm for graph coloring. Discrete Applied Mathematics, 156(2): 159-179. DOI: https://doi.org/10.1016/j.dam.2006.07.010
Lucet, C., Mendes, F., Moukrim, A. (2006). An exact method for graph coloring. Computers & Operations Research, 33(8): 2189-207. DOI: https://doi.org/10.1016/j.cor.2005.01.008
Malviya A., Agrawal B., Kumar S.and Mansuri A., (2022) “Study of algorithm for coloring in various graph”. International Journal of Statistics and Applied Mathematics, Vol,7(2), pp.88-91.DOI: https://doi.org/10.22271/maths.2022.v7.i2b.798 DOI: https://doi.org/10.22271/maths.2022.v7.i2b.798
Segundo, P.S. (2012). A new DSATUR-based algorithm for exact vertex coloring. Computer & Operations Research, 39(7): 1724-1733. DOI: https://doi.org/10.1016/j.cor.2011.10.008
Shukla A.N. ,Bharti V. and Garag M.L. (2019), “A Link List based Exact Algorithm for Graph Coloring Problem” Revue d ’Intelligence Artificiel,33(3),pp.189-195. DOI: https://doi.org/10.18280/ria.330304
Biswas S.,Nusrat S.A.,Sharmin N.and Rahman M (2023) “ Graph Coloring in University Timetable Scheduling” I.J. Intelligent Systems and Applications, Vol .3, .pp16-32 DOI: https://doi.org/10.5815/ijisa.2023.03.02
Sunanto U.A.M., Napitupulu H., Carnia E., Supriatna A.K.(2022) “ Course Scheduling of Undergraduate Study Program of Mathematics Universitas Padjadjaran Case Using Gra Coloring with Modified Algorithm”, International Journal of Mathematics Trends and Technology, Vol. 68 pp.61-69. DOI: https://doi.org/10.14445/22315373/IJMTT-V68I1P507
Klotz, W. (2002). Graph coloring algorithms Verlag nicht ermittelbar. mathematik.tu-clausthal.de pp.1-9
Gebremedhin, A. H. (1999). Parallel graph coloring. Candidatus scientarum, University of Bergen.
Cipta H., Widyasari R.,Batubara F.H.(2023) “Graph Coloring Implementation Using Welch Powel Algorithm In Lecture Scheduling Design For mathematics Department ” M ATHLINE Journal Matematika Dan Pendidikan Matematika,Vol 8,pp1383-1398. DOI: https://doi.org/10.31943/mathline.v8i4.537
Gangrade A., Agrawal B., Kumar S. (2023). Subject Allocation Bipartite Graph coloring Samdarshi, UGCCare, Vol.16(4), pp.3128-3132.
Gangrade A., Agrawal B., Kumar S. and Mansuri A. (2022) " A study of applications of graph coloring in various fields". International Journal of Statistics and Applied Mathematics; Vol 7(2), pp. 51-53. https://doi.org/10.22271/maths.2022.v7.i2a.795. DOI: https://doi.org/10.22271/maths.2022.v7.i2a.795
Malviya A., Agrawal B., Kumar S. (2023). “A new approach on Star chromatic number of splitting complete bipartite graph” Samdarshi, UGC Care, Vol.16(5), pp.2581-3986.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ayushi Malviya, Bhawna Agrawal, Sanjeet Kumar

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.