LARVICIDAL EFFICACY OF ALCOHOL-BASED EXTRACTION OF VERNONIA AMYGDALINA WITH BACILLUS THURINGIENSIS ON THE VECTOR AEDES AEGYPTI
DOI:
https://doi.org/10.29121/shodhkosh.v5.i7.2024.1982Keywords:
Aedes Aegypti, Vernonia Amygdalina, Traditional Medicine, Mosquito LarvaeAbstract [English]
Mosquitoes are the most significant category of hematophagous arthropods. Traditional medicine uses numerous plants for their larvicidal properties against mosquitoes in various regions globally. The combination of bacterial toxin and plant extract has a significant impact on mosquito larvae. We evaluated the larvicidal effectiveness of the plant extract Vernonia amygdalina in combination with B. thuringiensis against third instar larvae of Aedes aegypti. We recorded the average mortality and percentage mortality of larval populations at various concentrations after 24 and 48 hours of exposure. Bti and Vernonia amygdalina extracts showed significant insecticidal efficacy, as evidenced by LC 50 and LC 90 values. The LC50 values for 24-hour and 48-hour exposure are 18.35 and 16.71, respectively. The LC 90 values at 24 hours and 48 hours of exposure are 32.47 and 29.39, respectively.
References
Arunachalam N, Tewari SC, Thenmozhi V, Rajendran R, Paramasivan R, Manavalan R, 2008. Natural vertical transmission of dengue viruses by Aedes aegypti in Chennai, Tamil Nadu, India. Indian J Med Res.127:395-397
Becker, N. Petric, D., Zgomba, M., Boase, C., Dahl, C. and Kaiser A. 2006. Mosquitoes and their control. Heidelberg: Springer. p. 577
Dubey Anubhav, Tiwari M, Singh Yatendra, Kumar N, Srivastava K. Investigation of anti-Pyretic activity of vinpocetine in wistar rat, International Journal of Pharmaceutical Research 2020;12(2):1901-1906. DOI: https://doi.org/10.31838/ijpr/2020.12.02.254
Chadee DD, 2004. Key premises, a guide to Aedes aegypti (Diptera: Culicidae) surveillance and control. Bull Entomol Res; 94:201- 207. DOI: https://doi.org/10.1079/BER2004297
Chatterjee, S. Chatterjee, D. Das, and T. Dangar 2008. Efficacy of Bacillus sphaericus against Aedes aegypti, (Stegomyia). Mansoniaindiana (Edward) and culex vishnui, Entomon, 33 (3), pp. 181-187.
Gubler D. J. (1998). Dengue and dengue hemorrhagic fever. Clinical microbiology reviews, 11(3), 480–496. https://doi.org/10.1128/CMR.11.3.480 DOI: https://doi.org/10.1128/CMR.11.3.480
Kolivras, K.N. (2006), Mosquito Habitat and Dengue Risk Potential in Hawaii: A Conceptual Framework and GIS Application†. The Professional Geographer, 58: 139-154. DOI: https://doi.org/10.1111/j.1467-9272.2006.00521.x
Koodalingam A, Mullainadhan P and Arumugam M, 2009, Antimosquito activity of aqueous kernel extract of soapnut Sapindus emarginatus: impact on various developmental stages of three vector mosquito species and non-target aquatic insects. parasitology research Volume 105, Number 5, 1425-1434, DOl: 10.1007/soo436-009-1574. DOI: https://doi.org/10.1007/s00436-009-1574-y
Land M, Bundsehuh M, Hoplcins R J, PoulinB and Mckie BG, 2019. What are the effects of control of mosquitoes and other nematoceran Diptera using the microbal agent Bacillus thuringiensis israelensis (Bti) an aquatic and terrestrial eco system? Asystematic review of protocol. DOI: https://doi.org/10.1186/s13750-019-0175-1
Lawler, SP, 2017. Environmental safety review of methoprene and bacterially derived pesticides commonly used for sustained mosquito control. vol. 139, pp. 335-343. Mosquito. DOI: https://doi.org/10.1016/j.ecoenv.2016.12.038
Likitvivatanavong. S., Chen, J., Bravo, A., Soberon, M. and Gill, S. S. 2011. Cadherin, alkaline phosphatase, and aminopeptidase N as receptors of Cry11Ba toxin from Bacillus thuringiensis subsp. in Aedes aegypti. Appl Environ Microbiol, 77(1): 24-31. DOI: https://doi.org/10.1128/AEM.01852-10
Mckie, Brendan & Taylor, Astrid & Nilsson, Tobias & Frainer, André & Goedkoop, Willem. (2023). Ecological effects of mosquito control with Bti: evidence for shifts in the trophic structure of soil- and ground-based food webs. Aquatic Sciences. 85. 10.1007/s00027-023-00944-0. DOI: https://doi.org/10.1007/s00027-023-00951-1
Mittal, P.K, 2003. Prospects of using herbal products in the control of mosquito vectors, ICMR Bull., 33, pp. 1-10.
Muthukrishnan, J. and Pushpalatha, E. 2001. Effects of plants extracts on fecundity and fertility of mosquitoes. J Appl Entomol., 125:31-35 DOI: https://doi.org/10.1046/j.1439-0418.2001.00503.x
Perez, C., Fernandez, L. E., Sun, J., Folch, J. L., Gill, S. S. and Soberón, M. 2005. Bacillus thuringiensis subsp israelensis CytlAa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc Natl Acad Sci., 102(51): 18303-18308. DOI: https://doi.org/10.1073/pnas.0505494102
Ramaiah, KD, Das, PK, Michae, E, Guyatt, H, 2006. The economic burden of lymphatic filariasis in India. vol. 16, pp. 251-253. Parasitol Today. doi: 10.1016/S0169- 4758(00)01643-4 DOI: https://doi.org/10.1016/S0169-4758(00)01643-4
Winchester, J. C., & Kapan, D. D. (2013). History of Aedes mosquitoes in Hawaii. Journal of the American Mosquito Control Association, 29(2), 154–163. https://doi.org/10.2987/12-6292R.1 DOI: https://doi.org/10.2987/12-6292R.1
WHO, 2009. Dengue Guidelines for Diagnosis, Treatment, Prevention and control, WHO, Geneva, Switzerland.
Wirth, M. C., Park, H. W., Walton, W. E. and Federici, B. A. 2005. Cyt1A of Bacillus thuingiensis delays evolution of resistance to Cry11A in the mosquito Culex quinquefasciatus. Appl Environ Microbiol., 71(1): 185-189. DOI: https://doi.org/10.1128/AEM.71.1.185-189.2005
Lim, H., Lee, S. Y., Ho, L. Y., & Sit, N. W. (2023). Mosquito Larvicidal Activity and Cytotoxicity of the Extracts of Aromatic Plants from Malaysia. Insects, 14(6), 512. DOI: https://doi.org/10.3390/insects14060512
Sofi, Mohmmad Ashaq et al. (2022a) ‘Larvicidal activity of Artemisia absinthium extracts with special reference to inhibition of detoxifying enzymes in larvae of Aedes aegypti L’, Journal of King Saud University - Science, 34(7), p. 102248. DOI: https://doi.org/10.1016/j.jksus.2022.102248
Kamaraj, C., Bagavan, A., Elango, G., Zahir, A. A., Rajakumar, G., Marimuthu, S., Santhoshkumar, T., & Rahuman, A. A. (2011). Larvicidal activity of medicinal plant extracts against Anopheles subpictus & Culex tritaeniorhynchus. The Indian journal of medical research, 134(1), 101–106. DOI: https://doi.org/10.1007/s00436-010-1816-z
Carneiro, V. C. S., Lucena, L. B., Figueiró, R., & Victório, C. P. (2020). Larvicidal activity of plants from Myrtaceae against Aedes aegypti L. and Simulium pertinax Kollar (Diptera). Revista da Sociedade Brasileira de Medicina Tropical, 54, e00922020. DOI: https://doi.org/10.1590/0037-8682-0092-2020
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mamta Kumari, Deepika Shukla, Sushree Smaraki Das, Anubhav Dubey, Vinay Tiwari, Anuj Sonker

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.