LARVICIDAL EFFICACY OF ALCOHOL-BASED EXTRACTION OF VERNONIA AMYGDALINA WITH BACILLUS THURINGIENSIS ON THE VECTOR AEDES AEGYPTI

Authors

  • Mamta Kumari Department of Pharmacy, Maharana Pratap College of Pharmacy, Kanpur, Uttar Pradesh, India.
  • Deepika Shukla Associate Professor, Department of Microbiology, Maharana Pratap Dental College and Hospital, Kanpur, Uttar Pradesh, India.
  • Sushree Smaraki Das Assistant Professor, Department of Pharmacognosy, Dadhichi College of Pharmacy, India.
  • Anubhav Dubey Department of Pharmacy, Maharana Pratap College of Pharmacy, Kanpur, Uttar Pradesh, India.
  • Vinay Tiwari Department of Pharmacy, Maharana Pratap College of Pharmacy, Kanpur, Uttar Pradesh, India.
  • Anuj Sonker Department of Pharmacy, Maharana Pratap College of Pharmacy, Kanpur, Uttar Pradesh, India.

DOI:

https://doi.org/10.29121/shodhkosh.v5.i7.2024.1982

Keywords:

Aedes Aegypti, Vernonia Amygdalina, Traditional Medicine, Mosquito Larvae

Abstract [English]

Mosquitoes are the most significant category of hematophagous arthropods. Traditional medicine uses numerous plants for their larvicidal properties against mosquitoes in various regions globally. The combination of bacterial toxin and plant extract has a significant impact on mosquito larvae. We evaluated the larvicidal effectiveness of the plant extract Vernonia amygdalina in combination with B. thuringiensis against third instar larvae of Aedes aegypti. We recorded the average mortality and percentage mortality of larval populations at various concentrations after 24 and 48 hours of exposure. Bti and Vernonia amygdalina extracts showed significant insecticidal efficacy, as evidenced by LC 50 and LC 90 values. The LC50 values for 24-hour and 48-hour exposure are 18.35 and 16.71, respectively. The LC 90 values at 24 hours and 48 hours of exposure are 32.47 and 29.39, respectively.

References

Arunachalam N, Tewari SC, Thenmozhi V, Rajendran R, Paramasivan R, Manavalan R, 2008. Natural vertical transmission of dengue viruses by Aedes aegypti in Chennai, Tamil Nadu, India. Indian J Med Res.127:395-397

Becker, N. Petric, D., Zgomba, M., Boase, C., Dahl, C. and Kaiser A. 2006. Mosquitoes and their control. Heidelberg: Springer. p. 577

Dubey Anubhav, Tiwari M, Singh Yatendra, Kumar N, Srivastava K. Investigation of anti-Pyretic activity of vinpocetine in wistar rat, International Journal of Pharmaceutical Research 2020;12(2):1901-1906. DOI: https://doi.org/10.31838/ijpr/2020.12.02.254

Chadee DD, 2004. Key premises, a guide to Aedes aegypti (Diptera: Culicidae) surveillance and control. Bull Entomol Res; 94:201- 207. DOI: https://doi.org/10.1079/BER2004297

Chatterjee, S. Chatterjee, D. Das, and T. Dangar 2008. Efficacy of Bacillus sphaericus against Aedes aegypti, (Stegomyia). Mansoniaindiana (Edward) and culex vishnui, Entomon, 33 (3), pp. 181-187.

Gubler D. J. (1998). Dengue and dengue hemorrhagic fever. Clinical microbiology reviews, 11(3), 480–496. https://doi.org/10.1128/CMR.11.3.480 DOI: https://doi.org/10.1128/CMR.11.3.480

Kolivras, K.N. (2006), Mosquito Habitat and Dengue Risk Potential in Hawaii: A Conceptual Framework and GIS Application†. The Professional Geographer, 58: 139-154. DOI: https://doi.org/10.1111/j.1467-9272.2006.00521.x

Koodalingam A, Mullainadhan P and Arumugam M, 2009, Antimosquito activity of aqueous kernel extract of soapnut Sapindus emarginatus: impact on various developmental stages of three vector mosquito species and non-target aquatic insects. parasitology research Volume 105, Number 5, 1425-1434, DOl: 10.1007/soo436-009-1574. DOI: https://doi.org/10.1007/s00436-009-1574-y

Land M, Bundsehuh M, Hoplcins R J, PoulinB and Mckie BG, 2019. What are the effects of control of mosquitoes and other nematoceran Diptera using the microbal agent Bacillus thuringiensis israelensis (Bti) an aquatic and terrestrial eco system? Asystematic review of protocol. DOI: https://doi.org/10.1186/s13750-019-0175-1

Lawler, SP, 2017. Environmental safety review of methoprene and bacterially derived pesticides commonly used for sustained mosquito control. vol. 139, pp. 335-343. Mosquito. DOI: https://doi.org/10.1016/j.ecoenv.2016.12.038

Likitvivatanavong. S., Chen, J., Bravo, A., Soberon, M. and Gill, S. S. 2011. Cadherin, alkaline phosphatase, and aminopeptidase N as receptors of Cry11Ba toxin from Bacillus thuringiensis subsp. in Aedes aegypti. Appl Environ Microbiol, 77(1): 24-31. DOI: https://doi.org/10.1128/AEM.01852-10

Mckie, Brendan & Taylor, Astrid & Nilsson, Tobias & Frainer, André & Goedkoop, Willem. (2023). Ecological effects of mosquito control with Bti: evidence for shifts in the trophic structure of soil- and ground-based food webs. Aquatic Sciences. 85. 10.1007/s00027-023-00944-0. DOI: https://doi.org/10.1007/s00027-023-00951-1

Mittal, P.K, 2003. Prospects of using herbal products in the control of mosquito vectors, ICMR Bull., 33, pp. 1-10.

Muthukrishnan, J. and Pushpalatha, E. 2001. Effects of plants extracts on fecundity and fertility of mosquitoes. J Appl Entomol., 125:31-35 DOI: https://doi.org/10.1046/j.1439-0418.2001.00503.x

Perez, C., Fernandez, L. E., Sun, J., Folch, J. L., Gill, S. S. and Soberón, M. 2005. Bacillus thuringiensis subsp israelensis CytlAa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc Natl Acad Sci., 102(51): 18303-18308. DOI: https://doi.org/10.1073/pnas.0505494102

Ramaiah, KD, Das, PK, Michae, E, Guyatt, H, 2006. The economic burden of lymphatic filariasis in India. vol. 16, pp. 251-253. Parasitol Today. doi: 10.1016/S0169- 4758(00)01643-4 DOI: https://doi.org/10.1016/S0169-4758(00)01643-4

Winchester, J. C., & Kapan, D. D. (2013). History of Aedes mosquitoes in Hawaii. Journal of the American Mosquito Control Association, 29(2), 154–163. https://doi.org/10.2987/12-6292R.1 DOI: https://doi.org/10.2987/12-6292R.1

WHO, 2009. Dengue Guidelines for Diagnosis, Treatment, Prevention and control, WHO, Geneva, Switzerland.

Wirth, M. C., Park, H. W., Walton, W. E. and Federici, B. A. 2005. Cyt1A of Bacillus thuingiensis delays evolution of resistance to Cry11A in the mosquito Culex quinquefasciatus. Appl Environ Microbiol., 71(1): 185-189. DOI: https://doi.org/10.1128/AEM.71.1.185-189.2005

Lim, H., Lee, S. Y., Ho, L. Y., & Sit, N. W. (2023). Mosquito Larvicidal Activity and Cytotoxicity of the Extracts of Aromatic Plants from Malaysia. Insects, 14(6), 512. DOI: https://doi.org/10.3390/insects14060512

Sofi, Mohmmad Ashaq et al. (2022a) ‘Larvicidal activity of Artemisia absinthium extracts with special reference to inhibition of detoxifying enzymes in larvae of Aedes aegypti L’, Journal of King Saud University - Science, 34(7), p. 102248. DOI: https://doi.org/10.1016/j.jksus.2022.102248

Kamaraj, C., Bagavan, A., Elango, G., Zahir, A. A., Rajakumar, G., Marimuthu, S., Santhoshkumar, T., & Rahuman, A. A. (2011). Larvicidal activity of medicinal plant extracts against Anopheles subpictus & Culex tritaeniorhynchus. The Indian journal of medical research, 134(1), 101–106. DOI: https://doi.org/10.1007/s00436-010-1816-z

Carneiro, V. C. S., Lucena, L. B., Figueiró, R., & Victório, C. P. (2020). Larvicidal activity of plants from Myrtaceae against Aedes aegypti L. and Simulium pertinax Kollar (Diptera). Revista da Sociedade Brasileira de Medicina Tropical, 54, e00922020. DOI: https://doi.org/10.1590/0037-8682-0092-2020

Downloads

Published

2024-07-31

How to Cite

Kumari, M., Shukla, D., Das, S. S., Dubey, A., Tiwari, V., & Sonker, A. (2024). LARVICIDAL EFFICACY OF ALCOHOL-BASED EXTRACTION OF VERNONIA AMYGDALINA WITH BACILLUS THURINGIENSIS ON THE VECTOR AEDES AEGYPTI. ShodhKosh: Journal of Visual and Performing Arts, 5(7), 88–93. https://doi.org/10.29121/shodhkosh.v5.i7.2024.1982