ANALYZING MACHINE LEARNING METHODS TO ENHANCE GRAIN QUALITY ASSESSMENT AND EVOLUTION

Authors

  • Pawan Kumar Gupta Department of Computer Science and Engineering, AKS University, Satna
  • Dr. Akhilesh A. Waoo Department of Computer Science and Engineering, AKS University, Satna

DOI:

https://doi.org/10.29121/shodhkosh.v5.i1.2024.1876

Keywords:

Machine Vision, Wheat, Seed Quality, Classification, Quality, Deep Learning

Abstract [English]

Assessing grain quality is a crucial component of agricultural production, with significant implications for global food security and economic prosperity. With the increasing demand for top-tier grains, there arises a pressing need for sophisticated methodologies to aid in the ongoing assessment and monitoring of grain quality throughout its development. This paper offers a comprehensive examination of machine learning (ML) techniques utilized in grain quality evaluation. Through an analysis of recent research advancements, methodologies, and practical applications, this review sheds light on the effectiveness and potential obstacles associated with ML-driven approaches for enhancing grain quality assessment. Key areas of focus include the deployment of ML algorithms for predicting, classifying, and monitoring grain quality, as well as the incorporation of advanced sensing technologies and data analytics into grain quality assessment systems. Additionally, the review delves into emerging trends, future research avenues, and the broader implications of ML techniques in streamlining grain production processes and ensuring food safety and sustainability. By conducting a systematic review of existing literature, this paper contributes to a deeper comprehension of the role played by ML in addressing the multifaceted challenges of grain quality assessment and management within contemporary agriculture.

References

Aznan, A., Gonzalez Viejo, C., Pang, A., Fuentes, S.; "Computer Vision, and Machine Learning Analysis of Commercial Rice Grains: A Potential Digital Approach for Consumer Perception Studies" Sensors 2021, 21, 6354. https://doi.org/ 10.3390/s21196354, (2021). DOI: https://doi.org/10.3390/s21196354

“Wheat Structure.” [Online]. Available: http://www.nabim.org.uk/wheat-structure.

UCI Machine Learning Repository; “UCI Machine Learning Repository: Seeds Data Set” 2021, https://archive.ics.uci.edu/ml/index.php.

M. Agrawal and S. Agrawal; “A systematic review on artificial intelligence/deep learning applications and challenges to battle against COVID-19 pandemic” Disaster Advances, vol. 14, no. 8, pp. 90–99 (2021). DOI: https://doi.org/10.25303/148da9021

Singh, K.R., Chaudhury, S.; "A cascade network for the classification of rice grain based on single rice kernel" Complex & Intelligent Systems, 6:321–334 (2020). DOI: https://doi.org/10.1007/s40747-020-00132-9

Y. Toda, F. Okura, J. Ito, S. Okada, T. Kinoshita, H. Tsuji, D. Saisho; "Training Instance Segmentation Neural Network with Synthetic Datasets for Crop Seed Phenotyping" Commun. Biol., 3 (1), pp. 1-12 (2020). DOI: https://doi.org/10.1038/s42003-020-0905-5

Chu, X., Wang, W., Ni, X., Li, C., Li, Y.; "Classifying Maize Kernels Naturally Infected by Fungi using Near-Infrared Hyperspectral Imaging" Infrared Phys. Technol. 105, 1–11 (2020). DOI: https://doi.org/10.1016/j.infrared.2020.103242

S. K. Singh, S. K. Vidyarthi, R. Tiwari, B. Ridge, T. Morning, and S. Company; “Machine learned image processing to predict weight and size of rice kernels” Journal of Food Engineering, Volume 274, June 2020, 109828, (2020). DOI: https://doi.org/10.1016/j.jfoodeng.2019.109828

Sendin, K., Manley, M., Baeten, V., Pierna, J.A.F., Williams, P.J.; "Near-infrared hyperspectral imaging for white maize classification according to grading regulations" Food Anal. Methods 12 (7), 1612–1624, (2019). DOI: https://doi.org/10.1007/s12161-019-01464-0

Michał Kozłowski, Przemysław Górecki, Piotr M. Szczypiński; "Varietal classification of barley by convolutional neural networks" Biosyst. Eng. 184, 155–165, (2019). DOI: https://doi.org/10.1016/j.biosystemseng.2019.06.012

Kar, A., Kulshreshtha, P., Agrawal, A., Palakkal, S., Boregowda, L.R.; "Annotation-free quality estimation of food grains using deep neural network" In: 30th British Machine Vision Conference, pp. 1–12 (2019).

Gomez, N.A., Sanchez, K., Arguello, H.; "Non-Destructive Method for Classification of Cocoa Beans from Spectral Information" Symposium on Image, Signal Processing and Artificial Vision, IEEE, pp. 1–5 (2019). DOI: https://doi.org/10.1109/STSIVA.2019.8730257

Huang, S., Fan, X., Sun, L., Shen, Y., Suo, X.; "Research on Classification Method of Maize Seed Defect based on Machine Vision" J. Sensors 2, 1–10 (2019). DOI: https://doi.org/10.1155/2019/2716975

Kar, Akankshya, Prakhar Kulshreshtha, Ayush Agrawal, Sandeep Palakkal, and Lokesh R. Boregowda.; "Annotation-free Quality Estimation of Food Grains using Deep Neural Network" In BMVC, p. 52. (2019).

J. Acer; "Rules Proposals for the International Rules for Seed Testing", Vol. 47, International Seed Testing Association, Switzerland, Europe, 2019 edition, (2019).

T. Tujo; “A predictive model to predict seed classes using machine learning” Int. J. Eng. Tech. Res., vol. 6, pp. 334–344, (2019).

Fernandez-Gallego, J.A., Kefauver, S.C., Guti´errez, N.A., Nieto-Taladriz, M.T., Araus, J. L.; "Wheat ear counting in-field conditions: high throughput and low-cost approach using RGB images" Plant Methods 14 (1), 1–12 (2018). DOI: https://doi.org/10.1186/s13007-018-0289-4

Wah, T.N., San, P.E., Hlaing, T.; "Analysis on Feature Extraction and Classification of Rice Kernels for Myanmar Rice using Image Processing Techniques" Int. J. Sci. Res. Publ. 8 (8), 603–606 (2018). DOI: https://doi.org/10.29322/IJSRP.8.8.2018.p8078

D. I. Patr´ıcio and R. Rieder; “Computer vision and artificial intelligence in precision agriculture for grain crops: a systematic review” Computers and Electronics in Agriculture, vol. 153, pp. 69–81, (2018). DOI: https://doi.org/10.1016/j.compag.2018.08.001

Kamilaris and F. X. Prenafeta-Bold´u; “Deep learning in agriculture: a survey” Computers and Electronics in Agriculture, vol. 147, pp. 70–90, (2018). DOI: https://doi.org/10.1016/j.compag.2018.02.016

J. R. Ubbens and I. Stavness; “Corrigendum: deep plant phenomics: a deep learning platform for complex plant phenotyping tasks” Frontiers of Plant Science, vol. 8, p. 2245, (2018). DOI: https://doi.org/10.3389/fpls.2017.02245

K. P. Ferentinos; “Deep learning models for plant disease detection and diagnosis” Computers and Electronics in Agriculture, vol. 145, pp. 311–318, (2018). DOI: https://doi.org/10.1016/j.compag.2018.01.009

D. Sharma and S. D. Sawant; “Grain quality detection by using image processing for public distribution” Proc. 2017 International Conference Intell. Computer Control System (ICICCS 2017), vol. 2018-Janua, pp. 1118–1122, (2017). DOI: https://doi.org/10.1109/ICCONS.2017.8250640

E. Komyshev, M. Genaev, and D. Afonnikov; “Evaluation of the SeedCounter, A Mobile Application for Grain Phenotyping” Front. Plant Sci., vol. 7, no. January, pp. 1–9, (2017).

D. Vishnu, G. Mukherjee, and A. Chatterjee; “A computer vision approach for grade identification of rice bran” Proc. - 2017 3rd IEEE Int. Conf. Res. Computer Intell. Commun. Networks, ICRCICN 2017, vol. 2017-Decem, pp. 10–14, (2017). DOI: https://doi.org/10.1109/ICRCICN.2017.8234473

Z. Parveen, M. A. Alam, and H. Shakir; “Assessment of quality of rice grain using optical and image processing technique” Proc. 2017 Int. Conf. Commun. Comput. Digit. Syst. C-CODE 2017, pp. 265–270, (2017). DOI: https://doi.org/10.1109/C-CODE.2017.7918940

M. A. Momin, K. Yamamoto, M. Miyamoto, N. Kondo, and T. Grift; “Machine vision-based soybean quality evaluation” Comput. Electron. Agric., vol. 140, pp. 452–460, (2017). DOI: https://doi.org/10.1016/j.compag.2017.06.023

M. O. Aran, A. G. Nath, and A. Shyna; “Automated cashew kernel grading using machine vision” 2016 Int. Conf. Next Gener. Intell. Syst. ICNGIS 2016, (2017). DOI: https://doi.org/10.1109/ICNGIS.2016.7854063

Kaisaat, K., Keawdonree, N., Chomkokard, S., Jinuntuya, N., Pattanasiri, B.; "Color Measurements of Pigmented Rice Grain using Flatbed Scanning and Image Analysis" Journal of Physics: Conference Series, vol. 901, IOP Publishing, 2017, pp. 1–5 (2017). DOI: https://doi.org/10.1088/1742-6596/901/1/012069

Komyshev, E., Genaev, M., Afonnikov, D.; "Evaluation of the seed counter, a mobile application for grain phenotyping" Front. Plant Sci. 7, (2017).

E. Komyshev, M. Genaev, and D. Afonnikov; “Evaluation of the Seed Counter, A mobile application for grain phenotyping” Frontiers of Plant Science, vol. 7, (2017). DOI: https://doi.org/10.3389/fpls.2016.01990

M. Brahimi, K. Boukhalfa, and A. Moussaoui; “Deep learning for tomato diseases: classification and symptoms visualization” Applied Artificial Intelligence, vol. 31, no. 4, pp. 299–315, (2017). DOI: https://doi.org/10.1080/08839514.2017.1315516

Bhande and S. V Rode; “Quality Identification of Wheat by Using Image Processing” vol. 6, no. 4, pp. 3824–3826, (2016).

Rahman and B. K. Cho; “Assessment of seed quality using non-destructive measurement techniques: A review” Seed Sci. Res., vol. 26, no. 4, pp. 285–305, (2016). DOI: https://doi.org/10.1017/S0960258516000234

H. S. H. Chitra, S. Suguna, and S. N. Sujatha; “A survey on image analysis techniques in an agricultural product” Indian Journal of Science and Technology, vol. 9, no. 12, (2016). DOI: https://doi.org/10.17485/ijst/2016/v9i12/77171

Singh, K.R., Chaudhury, S.; "Efficient technique for rice grain classification using back-propagation neural network and wavelet decomposition" IET Comput. Vision 10 (8), 780–787, (2016). DOI: https://doi.org/10.1049/iet-cvi.2015.0486

Olgun, M., Onarcan, A.O., Ozkan, ¨ K., Is¸ik, S., Sezer, O., Ozgis ¨ ¸i, K., Ayter, N.G., Bas¸çiftçi, Z.B., Ardiç, M., Koyuncu, O.; "Wheat grain classification by using dense SIFT features with SVM classifier" Computers and Electronics in Agriculture, Volume 122, Pages 185-190, (2016). DOI: https://doi.org/10.1016/j.compag.2016.01.033

Ribeiro, S.S.: "Classification of grain based on the morphology, color, and texture information extracted from digital images". International Journal of Computer Application and Engineering Technology, Volume 5, Issue 3, Page no. 359-366, (2016).

P. Vithu and J. A. Moses; “Machine vision system for food grain quality evaluation: a review” Trends in Food Science & Technology, vol. 56, pp. 13–20, (2016). DOI: https://doi.org/10.1016/j.tifs.2016.07.011

A. Solah, H. K. Fenton, and G. B. Crosbie; Wheat: Grain Structure of Wheat and Wheat-based Products, 1st ed., no. 2002. Elsevier Ltd., (2015). DOI: https://doi.org/10.1016/B978-0-12-384947-2.00746-7

S. Mahajan, A. Das, and H. K. Sardana; “Image acquisition techniques for assessment of legume quality” Trends Food Sci. Technol., vol. 42, no. 2, pp. 116–133, (2015). DOI: https://doi.org/10.1016/j.tifs.2015.01.001

Hemad Zareiforoush, Saeid Minaei, Mohammad Reza Alizadeh, and Ahmad Banakar; "A hybrid intelligent approach on computer vision and fuzzy logic for quality measurement of milled rice" Measurement, Volume 66, Pages 26-34, (2015).

Birla, R., Chauhan, A.P.S.; "An Efficient Method for Qualitative Analysis of Rice using a Machine Vision System" J. Adv. Information. Technol. 6 (3), 140–145 (2015). DOI: https://doi.org/10.12720/jait.6.3.140-145

Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A.; "A Hybrid Intelligent Approach Based on Computer Vision and Fuzzy Logic for Quality Measurement of Milled Rice" Measurement 66, 26–34 (2015). DOI: https://doi.org/10.1016/j.measurement.2015.01.022

M. R. Siddagangappa and A. P. A. H. Kulkarni; “Classification and Quality Analysis of Food Grains” IOSR Journal Computer Engineering, vol. 16, no. 4, pp. 01–10 (2014). DOI: https://doi.org/10.9790/0661-16430110

S. K. Bejo and S. Kamaruddin; “Determination of Chokanan Mango Sweetness (Mangifera indica) using Non-Destructive Image Processing Technique” Aust. J. Crop Sci., vol. 8, no. 4, pp. 475–480, (2014).

Radhika and V. Sree Hari Rao; “Computational approaches for the classification of seed storage protein” Journal of Food Science and Technology, 52(7):4246-55, (2014). DOI: https://doi.org/10.1007/s13197-014-1500-x

Vinita Tajane, and Prof. N. J. Janwe; "Ayurvedic plant disease identification using CBIR" International Journal of Innovative Research in Computer and Communication Engineering, Vol. 2, Issue 6, (2014).

J. Ujam and K. O. Enebe; “Experimental analysis of particle size distribution using an electromagnetic sieve” Am. J. Eng. Res., vol. 02, no. 10, pp. 77–85, (2013).

Silva and U. Sonnadara; “Classification of rice grains using neural networks” Proceedings of Technical Sessions, vol. 29, (2013).

T. Tanabata, T. Shibaya, K. Hori, K. Ebana, and M. Yano; “SmartGrain: High throughput phenotyping software for measuring seed shape through image analysis”, Plant Physiol., vol. 160, no. 4, pp. 1871–1880, (2012).

B. B. & M. K. S. MIHIR. N. DUDHREJIA; “Unexplored Idea to Examine Grain Specimen Quality by Utilizing Image Processing Intelligence” International Journal Computer Science Engineering, vol. 6, no. 1, pp. 67–78, (2017).

S. J.MousaviRad, F. Akhlaghian Tab, and K. Mollazade; “Application of Imperialist Competitive Algorithm for Feature Selection: A Case Study on Bulk Rice Classification” International Journal Computer Application, vol. 40, no. 16, pp. 41–48, (2012). DOI: https://doi.org/10.5120/5068-7485

O. Yorulmaz, T. C. Pearson, and E. A. Çetin; “Detection of fungal damaged popcorn using image property covariance features” Computer Electronic Agriculture, vol. 84, pp. 47–52, (2012). DOI: https://doi.org/10.1016/j.compag.2012.02.012

L. Li and S. Liu; “Wheat cultivar classifications based on tabu search and fuzzy C-means clustering algorithm” in Proceedings of the 2012 4th International Conference on Computational and Information Sciences, pp. 493–496, Chongqing, China, August. (2012). DOI: https://doi.org/10.1109/ICCIS.2012.365

T. Tanabata, T. Shibaya, K. Hori, K. Ebana, and M. Yano; “SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis” Plant Physiology, vol. 160, no. 4, pp. 1871–1880, (2012). DOI: https://doi.org/10.1104/pp.112.205120

S. Salah Ghamari; “Classification of chickpea seeds using supervised and unsupervised artificial neural networks” African Journal of Agricultural Research, vol. 7, no. 21, (2012). DOI: https://doi.org/10.5897/AJAR11.2071

Y. S. Çakmak and I. S. H. Boyaci; “Quality evaluation of chickpeas using an artificial neural network-integrated computer vision system” International Journal Food Science Technology, vol. 46, no. 1, pp. 194–200, (2011). DOI: https://doi.org/10.1111/j.1365-2621.2010.02482.x

Ayse C. Mutlu, Ismail Hakki Boyaci, Huseyin E. Genis, Rahime Ozturk, Nese Basaran-Akgul, Turgay Sanal, and Asuman Kaplan Evlice; “Prediction of wheat quality parameters using near-infrared spectroscopy and artificial neural networks” European Food Research and Technology, vol. 233, no. 2, pp. 267–274, (2011). DOI: https://doi.org/10.1007/s00217-011-1515-8

S. Hossain, R. Ford, D. McNeil, C. Pittock, and J. F. Panozzo; “Inheritance of seed size in chickpea (Cicer arietinum L.) An identification of QTL based on 100-seed weight and seed size index” Aust. J. Crop Sci., vol. 4, no. 2, pp. 126–135, (2010).

A. Gowen, B. K. Tiwari, P. J. Cullen, K. McDonnell, and C. P. O’Donnell; “Applications of thermal imaging in food quality and safety assessment” Trends Food Sci. Technol., vol. 21, no. 4, pp. 190–200, (2010). DOI: https://doi.org/10.1016/j.tifs.2009.12.002

Chandra B. Singh, Digvir S. Jayas, Jitendra Paliwal, and Noel D.G. White; "Identification of insect-damaged wheat kernel using short-wave near-infrared hyperspectral and digital color imaging" Computers and Electronics in Agriculture, Volume 73, Issue 2, Pages 118-125 (2010). DOI: https://doi.org/10.1016/j.compag.2010.06.001

Igathinathane, L. O. Pordesimo, and W. D. Batchelor; “Major orthogonal dimensions measurement of food grains by machine vision using ImageJ” Food Res. Int., vol. 42, no. 1, pp. 76–84, (2009). DOI: https://doi.org/10.1016/j.foodres.2008.08.013

R. Choudhary, S. Mahesh, J. Paliwal, and D. S. Jayas; “Identification of wheat classes using wavelet features from near-infrared hyperspectral images of bulk samples” Biosystems Engineering, vol. 102, no. 2, pp. 115–127, (2009). DOI: https://doi.org/10.1016/j.biosystemseng.2008.09.028

S. Ahmad, J. F. Reid, M. R. Paulsen, and J. B. Sinclair; “Color Classifier for Symptomatic Soybean Seeds Using Image Processing” Plant Dis., vol. 83, no. 4, pp. 320–327, (2007). DOI: https://doi.org/10.1094/PDIS.1999.83.4.320

O. Adjemout, K. Hammouche, and M. Diaf; “Automatic seeds recognition by size, form and texture features” 2007 9th Int. Symp. Signal Process. its Appl. ISSPA 2007, Proc., pp. 2–5, (2007). DOI: https://doi.org/10.1109/ISSPA.2007.4555428

C.-J. Du and D.-W. Sun; “Learning techniques used in computer vision for food quality evaluation: a review” Journal of Food Engineering, vol. 72, no. 1, pp. 39–55, (2006). DOI: https://doi.org/10.1016/j.jfoodeng.2004.11.017

R. Song, D. Ponge, R. Kaspar, and D. Raabe; “Grain boundary characterization and grain size” vol. 95, pp. 3–7, (2004). DOI: https://doi.org/10.1515/ijmr-2004-0101

S. V. Neeraj Singh Visen, J. Jitendra Paliwal, D. Digvir Jayas, and N. D. G. White; “Image analysis of bulk grain samples using neural networks” Canadian Biosystems Engineering Le Genie des biosystems au Canada, vol. 46, (2003). DOI: https://doi.org/10.13031/2013.15002

T. Leung and D. S. Parker; “Empirical comparisons of various voting methods in bagging” in Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’03, p. 595, (2003). DOI: https://doi.org/10.1145/956804.956825

M. Van Erp, L. Vuurpijl, and L. Schomaker; “An overview and comparison of voting methods for pattern recognition” Proceedings of the 8th International Workshop on Frontiers in 8 Scientific Programming Handwriting Recognition, Niagara on the Lake, pp. 195–200, (2002). DOI: https://doi.org/10.1109/IWFHR.2002.1030908

M. Kubat, M. Jr.; "Voting Nearest-Neighbors Sub classifiers" Proceedings of the 17th International Conference on Machine Learning, ICML-2000, pp. 503–510, Stanford, CA, June 29–July 2, (2000).

M. Kubat and J. R. Martin Cooperson; “Voting Nearest Neighbour Sub classifiers” in Proceedings of the 17th International Conference on Machine Learning, pp. 503–510, San Francisco, CA, USA, January (2000).

R. E. Schapire and Y. Singer; “Improved boosting algorithms using confidence-rated predictions” in Proceedings of the 11th annual conference on Computational learning theory - COLT’ 98, pp. 80–91, (1998). DOI: https://doi.org/10.1145/279943.279960

Alpaydin.; "Voting Over Multiple Condensed Nearest Neighbors" Artificial Intelligence Review 11:115-132, ©1997 Kluwer Academic Publishers (1997).

Alpaydin; “Voting over Multiple Condensed Nearest Neighbours” in Lazy Learning, D. W. Aha, Ed., Springer Netherlands, Dordrecht, the Netherlands, (1997). DOI: https://doi.org/10.1007/978-94-017-2053-3_4

Breiman; “Bagging predictors” Machine Learning, vol. 24, no. 2, pp. 123–140, (1996). DOI: https://doi.org/10.1007/BF00058655

ZAYAS, Y. POMERANZ, and F. LAI; “Discrimination of wheat and non-wheat components in grain samples by image analysis” Cereal Chem., vol. 66, no. 3, pp. 233–237, (1989).

R. Neuman, E. Shwedyk, and W. Bushuk; “A PC-based colour image processing system for wheat grain grading” in Proceedings of the 3rd International Conference on Image Processing and its Applications, 1989, pp. 242–246, Warwick, UK, (July 1989).

W. S. Meyer and H. D. Barrs; “Non-destructive measurement of wheat roots in large undisturbed and repacked clay soil cores” Plant and Soil, vol. 85, no. 2, pp. 237–247, (1985). DOI: https://doi.org/10.1007/BF02139628

Gates.; "The Reduced Nearest Neighbour Rule" IEEE Transactions on Information Theory, 18, 431–433, (1972) DOI: https://doi.org/10.1109/TIT.1972.1054809

P. Hart.; "The Condensed Nearest Neighbour Rule" IEEE Transactions on Information Theory, 14, 515–516, (1968). DOI: https://doi.org/10.1109/TIT.1968.1054155

Waoo, AA, Soni, BK. (2023) Chapter 5 - Recurrent neural network model for identifying neurological auditory disorder, Editor(s): Ajith Abraham, Sujata Dash, Subhendu Kumar Pani, Laura García-Hernández, Artificial Intelligence for Neurological Disorders, Academic Press, 2023, Pages 77-89, ISBN 9780323902779, https://doi.org/10.1016/B978-0-323-90277-9.00103-6. DOI: https://doi.org/10.1016/B978-0-323-90277-9.00103-6

Downloads

Published

2024-01-31

How to Cite

Gupta, P. K., & Waoo, A. A. (2024). ANALYZING MACHINE LEARNING METHODS TO ENHANCE GRAIN QUALITY ASSESSMENT AND EVOLUTION. ShodhKosh: Journal of Visual and Performing Arts, 5(1), 513–525. https://doi.org/10.29121/shodhkosh.v5.i1.2024.1876