DESIGN OF HEXAGONAL PHOTONIC CRYSTAL FIBER WITH ULTRA-HIGH BIREFRINGENT AND LARGE NEGATIVE DISPERSION COEFFICIENT FOR THE APPLICATION OF BROADBAND FIBER

  • Shovasis Kumar Biswas Department of Electrical and Electronic Engineering, Independent University Bangladesh (IUB), Dhaka, Bangladesh
  • S. M. Rakibul Islam Departmentof Electrical and Electronic Engineering, Independent University Bangladesh (IUB), Dhaka, Bangladesh
  • Md. Monirul Islam Departmentof Electrical and Electronic Engineering, Independent University Bangladesh (IUB), Dhaka, Bangladesh
  • Md. Nafiz Ahbabur Rahman Departmentof Electrical and Electronic Engineering, Independent University Bangladesh (IUB), Dhaka, Bangladesh
  • Mohammad Mahmudul Alam Mia Departmentof Electronics and Communication Engineering, Sylhet International University, Sylhet, Bangladesh
  • Md Shahrier Hakim Departmentof Electrical and Electronic Engineering, Bangladesh University, Dhaka, Bangladesh
Keywords: Photonic Crystal Fiber (PCF), Ultra-High Birefringence, Nonlinear Coefficient

Abstract

The purpose of this paper is to design a hexagonal microstructure photonic crystal fiber (PCF) which gives ultra-high birefringence and very low confinement loss for sensing application. To characterize the modal properties of the proposed photonic crystal fiber, finite element method is used. We found ultra-high birefringence of 3.34×10-2 at operating wavelength 1550nm by using simulation software comsol multiphysics. Our proposed PCF gives large value of nonlinear coefficient of 63.51 W-1km-1, large value of negative dispersion coefficient of -566.6 ps/ (nm.km), and also ultra-low confinement loss which is in the order of 10-7.

Downloads

Download data is not yet available.

References

Razzak, S. A., Namihira, Y., & Begum, F. (2007). Ultra-flattened dispersion photonic crystal fibre. Electronics Letters, 43(11), 615-617. DOI: https://doi.org/10.1049/el:20070558

M. Koshiba and K. Saitoh, “Structural dependence of effective area and mode field diameter for holey fibers”, Opt. Express 11 (2003), 1746-1756. DOI: https://doi.org/10.1364/OE.11.001746

S. M. A. Razzak and Y. Namihira, ‘‘Proposal for highly nonlinear dispersion- flattened octagonal photonic crystal fibers,” IEEE photon. Technol. Lett., 20 (2008) 249-251.

K. Saitoh, M. Koshiba, T. Hasegawa and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultraflattened dispersion,” Opt. Exp., 11 (2003), 843-852. DOI: https://doi.org/10.1364/OE.11.000843

J. Laegsgaard, S. E. BarkouLibori, K. Hougaard, J. Riished, T. T. Lasen, and T. Sorensen, ‘‘Dispersion Properties of photonic crystal fibers- issues and opportunities,” Mater. Res. Soc. Symp. Proc., (2004) 797. DOI: https://doi.org/10.1557/PROC-797-W7.1

L. Gruner- Nielsen, S. N. Knudsen, B. Edvold , T. Veng, D. Magnussen, and C. C. Larsem, “ Dispersion compensating fibers,” Opt. Fiber Technol., (2000), 164. DOI: https://doi.org/10.1006/ofte.1999.0324

S .G. Li, X. D. Liu, L. T. Hou, “Numerical study on dispersion compensating property in photonic crystal fibers,” Acta Phys. Sin., (2004) 1880.

Z. W. Tan, T. G. Ning, Y. Liu, Z. Tong and S. S. Jian, “Suppression of the interactions between fiber gratings used as dispersion compensators in dense wave length division multiplexing systems,”Chin. Phys., (2006) 1819-1823. DOI: https://doi.org/10.1088/1009-1963/15/8/032

Wang, W., Yang, B., Song, H., & Fan, Y. "Investigation of high birefringence and negative dispersion photonic crystal fiber with hybrid crystal lattice." Optik-International Journal for Light and Electron Optics 124.17 (2013): 2901-2903. DOI: https://doi.org/10.1016/j.ijleo.2012.08.084

S. F. Kaijage, Y. Namihira, N. H. Hai , F. Begum , S. M. A. Razzak, T. Kinjo, K. Miyagi and N. Zou, ‘‘Broadband dispersion compensating octagonal photonic crystal fiber for optical communication apllications,”Japan. J. of Appl. Phy., vol.48, 052401-052408, 2009. DOI: https://doi.org/10.1143/JJAP.48.052401

M. Selim Habib , M. Samiul Habib , S. M. A. Razzak , Y. Namihira, M.A. Hossain and M. A. G. khan, “Broadband dispersion compensation of conventional single mode fibers using microstructure optical fibers,” Optik, (doi.org/10.1016/j.ijleo.2012.12.014), Feb 2013.

T. Matsui, K. Nakajima and I. Sankawa, “Dispersion Compensation Over All the Telecommunication Bands with Double-Cladding Photonic-Crystal Fiber,” J. Lightw. Technol. 25, 757-762 (2007).

Austin, D. (2005). Supercontinuum in axially varying photonic crystal fibres.

M. Selim habib, M. Samiul Habib, S. M. A. Razzak, M. I. Hasan, R. R. Mahmud and Y. Namihira, ‘‘Microstructure holey fibers as wideband dispersion compensating media for high speed transmission system,” Optik (2013). DOI: https://doi.org/10.1016/j.ijleo.2013.03.128

Guo, S., Wu, F., Albin, S., Tai, H., & Rogowski, R. (2004). Loss and dispersion analysis of microstructured fibers by finite-difference method. Optics Express, 12(15), 3341-3352. DOI: https://doi.org/10.1364/OPEX.12.003341

Biswas, S. K., & Kumar, S. (2015). Impact of Kerr nonlinearity on the whispering gallery modes of a microsphere. Optics express, 23(20), 26738-26753. DOI: https://doi.org/10.1364/OE.23.026738

Biswas, Shovasis. Impact of Kerr and Raman nonlinear effects on the whispering gallery modes of a spherical microcavity. Diss. 2016. DOI: https://doi.org/10.1364/OE.23.026738

Kumar, S., & Biswas, S. K. (2016). Impact of Kerr nonlinearity and stimulated Raman scattering on the whispering gallery modes of an optical microsphere. JOSA B, 33(8), 1677-1687. DOI: https://doi.org/10.1364/JOSAB.33.001677

Siddique A. B. and Biswas S. K. (2015). Performance analysis of bifacial PV module for the integration in static Sea Shell concentrator,” International Conference on Electrical & Electronic Engineering (ICEEE), 65-68. DOI: https://doi.org/10.1109/CEEE.2015.7428294

A Siddique, SK Biswas, S Sinha, a Pal, RK Mazumder (2013). Performance analysis of bifacial PV module for the integration in static Sea Shell concentrator,” International Conference on Informatics, Electronics & Vision (ICIEV), 1-6.

W. H. Reeves, J. C. Knght and P. S. J. Russell, “Demonstration of ultraflattened dispersion in photonic crystal fibers,” Opt. exp., 10(2002) 609-613. DOI: https://doi.org/10.1364/OE.10.000609

Benabid, F., & Roberts, P. J. (2011). Linear and nonlinear optical properties of hollow core photonic crystal fiber. Journal of Modern Optics, 58(2), 87-124. DOI: https://doi.org/10.1080/09500340.2010.543706

Japatosh Mondal, Mohammad Shaifur Rahman, “ Design of highly birefringent dispersion compensating spiral photonic crystal fiber” in 2nd Int'l Conf on Electrical Engineering and Information & Communication Technology (ICEEICT) 2015, Bangladesh. DOI: https://doi.org/10.1109/ICEEICT.2015.7307515

Chowdhury, Shabbir, and Japatosh Mondal. "Designing of a non-zero dispersion shifted fiber with ultra-high birefringence and high non-linearity." Electrical Engineering and Information Communication Technology (ICEEICT), 2016 3rd International Conference on. IEEE, 2016. DOI: https://doi.org/10.1109/CEEICT.2016.7873157

Published
2017-09-01
How to Cite
Biswas, S. K., Islam, S. M. R., Islam, M. M., Rahman, M. N. A., Alam Mia, M. M., & Hakim, M. S. (2017). DESIGN OF HEXAGONAL PHOTONIC CRYSTAL FIBER WITH ULTRA-HIGH BIREFRINGENT AND LARGE NEGATIVE DISPERSION COEFFICIENT FOR THE APPLICATION OF BROADBAND FIBER. International Journal of Engineering Science Technologies, 2(1), 9-16. https://doi.org/10.29121/IJOEST.v2.i1.2017.02