• Imane El Mhamedi High School of Technology, Moulay Ismaïl University, Meknes, Morocco
  • Anass El Karkri
  • Zakaria El Malki
  • Mohammed Bouachrine



Organic Compounds, SILVACO, PVK-PEDOT, OLED, Electro-optical characteristics


Organic light emitters (OLEDs) work according to the principles of electroluminescence. These OLEDs are commercially available and can be used in smartphone and television displays due to their low power consumption, flexibility and higher brightness than inorganic de-vices. The copolymer based on 3,4-ethylene dioxythiophene (EDOT) and poly(N-vinylcarbazole) (PVK) was synthesized using previously published procedures. The copolymer was synthesized by an oxidative copolymerization reaction, while the DFT/B3LYP/6-31G(d,p) density function theory method was used to perform quantum calculations. This paper presents the simulation results by SILVACO-TCAD simulation software of the PVK-PEDOT organic matrix with calcium as cathode and ITO as anode. The simulation is based on the distribution of the Langevin recombination model including the proposed structure, and the electrical and optical characteristics, such as current versus voltage, luminescence power, and current versus electric field for different thicknesses, and charge carrier densities of the emitting layer, as well as the I-V characteristics for different temperature values. The model presented here will be useful in the future for optimization of better electrical parameters.


Download data is not yet available.


Al-Azzawi A.G.S, Aziz S.B, Dannoun E.M.A, Iraqi A, Nofal M.M, Murad A.R, M. Hussein A (2023) A Mini Review on the Development of Conjugated Polymers: Steps towards the Commercialization of Organic Solar Cells. Polymers , 15, 164,

Alam, M.J., Cameron, D.C. Optical and electrical properties of transparent conductive ITO thin films deposited by sol–gel process. Thin Solid Films (2000) 377–378, 0040-6090.

Azaid, A., Abram, T., Kacimi, R., Sbai, A., lakhlifi ,T., Bouachrine, M. (2021). Organic materials based with D– π –A structure based on thiophene and anthracene for application in dye-sensitized solar cells. Materials Today: Proceeding, 45, 7363-7369.

Bakour, A., Saadoune, A., Bouchama, I., Dhiabi, F., Boudour, S., Alam, M.S. (2022). Effect and optimization of ZnO layer on the performance of GaInP/GaAs tandem solar cell. Micro and Nanostructures, 168, 2773-0123.

Bizzarri, C., Spuling, E., Knoll, D.M., Volz, D., Braese, S. (2018) Sustainable metal complexes for organic light-emitting diodes (OLEDs). Coord. Chem. Rev, 373, 49–82,

Blom, P.W.M., Jong, M.J.M., and Breedijk, S. (1997). Temperature Dependent Electron-Hole Recombination in Polymer Light-Emitting Diodes, Applied Physics Letters,71,930-932.

EL Mhamedi, I., El Karkri, A., and El Malki, Z. (2022). Simulation of the performance of organic solar cells based on D1-BT-EDOT-BT-D2-A/PCBM structures, E3S Web Conf., 336,00063.

El Malki, Z., Hasnaoui, K., Bejjit, L., Haddad, M., Hamidi, M., Bouachrine, M. (2010). Synthesis, characterization and theoretical study of new organic copolymer based on PVK and PEDOT. Journal of Non-Crystalline Solids, 356,467–473.

El karkri, A., El mhamedi, I., and El malki, Z. (2022). Prediction and Simulation of electrical and optical characteristics of an OLED based on P3BEdotBT3A organic material. E3S Web Conf., 336, 00062,

Gill, W.D. (1972). Drift Mobilities in Amorphous Charge-Transfer Complexes of Trinitrofluorenone and Poly-n-vinylcarbazole, J. Appl. Phys, 55,12, 5033.

Güney, H.Y, Avdan, Z., and Yetkin, H. (2019). Optimization of annealing temperature and the annealing effect on life time and stability of P3HT: PCBM-based organic solar cells. Materials Research Express, 6, 1-19.

Heeger, A.J, Macdiarmid, A.G, and Shirakawa, H. (2002). Macromolecules. Am. Chem. Soc, 35,1137–1139,

Helfrich, W., and Schneider, W.G. (1965). Recombination radiation in anthracene crystals. Phys. Rev. Lett., 140,229,

Janghouri, M., Mohajerani, E. (2019). Color optimization of red OLEDs via periodic and gradient deposition rate of fuorescent dopants. Opt. Quant. Electron, 51, 282.

Kharchich, F.Z., Khamlichi, A. (2023). Simulation aided design of a high efficient GaSb based single-junction solar cell. International Review of Applied Sciences and Engineering, 2062-0810.

Liang, J., Tang, X., Yin, P., Weng, C., Shen, P. (2021). Development of new nonacyclic small-molecule acceptors involving two benzo[1,2-b:4,5-b] dithiophene moieties for efficient polymer solar cells. Synthetic Metals, 282.

Luo, J., Rong, X.-F., Ye, Y.-Y., Li, W.-Z., Wang, X.-Q., Wang, W. (2022). Research Progress on Triarylmethyl Radical-BasedHigh-Efficiency OLED. Molecules, 27,1632.

Lysenko, IA., Patrashanu, LA., Zykov, DD. (2016) Organic Light Emitting Diode Simulation Using Silvaco TCAD Tools. International Siberian Conference on Control and Communications (SIBCON). 2380-6516.

Nitschke, P., Jarzabek, B., Damaceanu, M.D., Bejan, A.E., Chaber, P., (2021). Spectroscopic and electrochemical properties of thiophene-phenylene based Shiff-bases with alkoxy side groups, towards photovoltaic applications. Spectrochim Acta A Mol Biomol Spectrosc, 248.

Partridge, P.H. (1983). Electroluminescence from polyvinylcarbazole lms: 3. Electroluminescent devices. Polymer, 24,748,

Raftani, M., Abram, T., Azaid, A., Kacimi, R., Bennani, M.N., and Bouachrine, M. (2021). Theoretical design of new organic compounds based on diketopyrrolopyrrole and phenyl for organic bulk heterojunction solar cell applications: DFT and TD-DFT study. Materials Today: Proceedings, 45, 7259-7800.

Raftani, M., Abram, T., Bennani, N., Bouachrine, M. (2020). Theoretical study of new conjugated compounds with a low bandgap for bulk heterojunction solar cells: DFT and TD-DFT study. Results in Chemistry, 100040, 2211-7156.

Raj, A., Gupta, M., Suman, D. (2019). Simulation of Multilayer Energy Efficient OLEDs for Flexible tilayer Energy Efficient. Procedia Computer Science, 152,301–308.

Ruhstaller, B., Carter, S.A., Barth, S., Riel, H., Riess, W., Scott, J.C., (2001). Transient and Steady-State Behavior of Space Charges in Multilayer Organic Light-Emitting Diodes, J. Appl. Phys, 89,4575-4586.

Semire, B., Oyebamiji, A.K., Odunola, O.A. (2020). Electronic properties modulation of D–A–A via fluorination of 2-cyano-2-pyran-4-ylidene-acetic acid acceptor unit for efficient DSSCs: DFT-TDDFT approach. Scientific African,7, e00287-e00287.

Singh, R., Narayanan, K.N., Solanki, A. (2012). Deepak. Improving the contrast ratio of OLED displays: An analysis of various techniques. Optical Materials, 34,716-723.

Taherinia, D., Fattahi, A. (2022). Inducing high exo selectivity in Diels–Alder reaction by dimethylborane substituent: a DFT study. Sci Rep, 12, 22225.

Udhiarto, A., Sister, Y., Rini, S., Asvial, M., and Munir, B. (2015). Effect of Hole Transport Layer and Electron Transport Layer on the performance of a single emissive layer Organic Light Emitting Diode. International Conference on Quality in Research (QiR), Lombok, 137-140.

Zeng, X., Li, Z., Ren, J., Ge, T., Zang, A., and Sun, Q. (2018). Low bandgap diketopyrrolopyrrole-based polymers with an asymmetric unit of fl uoridated phenylene-thiophene for efficient polymer solar cells. Synthetic Metals, 240, 30-36.




How to Cite

El Mhamedi, I., El Karkri, A., El Malki, Z., & Bouachrine, M. . (2023). SIMULATION AND ANALYSIS OF ELECTRO-OPTICAL CHARACTERISTICS OF ORGANIC COMPOUNDS IN ORGANIC LIGHT-EMITTING DIODES (OLEDs). International Journal of Engineering Science Technologies, 7(3), 8–22.