THE AMERICAN CONTINENT HYDROPOWER DEVELOPMENT AND THE SUSTAINABILITY: A REVIEW

Authors

  • Sebastian Naranjo-Silva Ministry of Production, Foreign Trade and Investment https://orcid.org/0000-0002-1430-8140
  • Javier Alvarez del Castillo Polytechnic University of Catalonia; Barcelona, Spain

DOI:

https://doi.org/10.29121/ijoest.v6.i2.2022.315

Keywords:

Energy, Environment, Hydropower, Renewable, Sustainable, Water

Abstract

The present review compares and takes the main ideas around hydropower development in eight countries of the American continent, identifying its advantages and disadvantages, showing a vision concerning sustainability. It is conclusive that there are impacts for each megawatt produced with hydropower, and the generation structure that uses the water resource of natural currents is not highly clean. Moreover, there is the mistaken criterion for developing a renewable hydropower project related to sustainability, a wrong approach, as demonstrated with the review. The examination in the eight countries of America some analyzes and the most concludes that, before considering a construction with thousands of dollars of investment and water contained in dams, the social and environmental analysis must respond to the restrictions on building new hydropower projects, promoting other unconventional renewable energy sources development. It is recommended to determine an objective quantitative approach of hydropower combining hydrology, energy efficiency, and interaction scenarios of future climate change to know the best energy grids diversifying balanced renewable and no renewable sources for each country.

Downloads

Download data is not yet available.

References

Alarcon, A. (2019, June 18). The Hydroelectric Plants In Latin America, Where Are We ? And Where Are We Going ? https://blogs.iadb.org/energia/es/hidroelectricas-en-latinoamerica-donde-estamos-y-hacia-donde-vamos/

Antwi, M., & Sedegah, D. D. (2018). Climate Change and Societal Change-Impact on Hydropower Energy Generation. In Sustainable Hydropower in West Africa 63-73. https://doi.org/10.1016/B978-0-12-813016-2.00005-8

Arango-Aramburo, S., Turner, S. W. D., Daenzer, K., Ríos-Ocampo, J. P., Hejazi, M. I., Kober, T., Álvarez-Espinosa, A. C., Romero-Otalora, G. D., & van der Zwaan, B. (2019). Climate impacts on hydropower in Colombia : A Multi-Model Assessment of Power Sector Adaptation Pathways. Energy Policy, 179-188. https://doi.org/10.1016/j.enpol.2018.12.057

Ardizzon, G., Cavazzini, G., & Pavesi, G. (2014). A New Generation of Small Hydro And Pumped-Hydro Power Plants : Advances and futurs challenges. Renewable and Sustainable Energy Reviews, 31, 746-761. https://doi.org/10.1016/j.rser.2013.12.043

Arganis, J, M. L., Mendoza Ramirez, R., Dominguez Mora, R., & Carrizosa Elizondo, E. (2015). Políticas de operación de la presa « El Infiernillo » para generación de hidroelectricidad con programación dinámica estocástica. Ribagua, 2(2), 97-104. https://doi.org/10.1016/j.riba.2015.10.003

Berga, L. (2016). The Role of Hydropower in Climate Change Mitigation and Adaptation : A Review. Engineering, 2(3), 313-318. https://doi.org/10.1016/J.ENG.2016.03.004

Boehlert, B., Strzepek, K. M., Gebretsadik, Y., Swanson, R., McCluskey, A., Neumann, J. E., McFarland, J., & Martinich, J. (2016). Climate Change Impacts And Greenhouse Gas Mitigation Effects on U.S. Hydropower Generation. Applied Energy, 183, 1511-1519. https://doi.org/10.1016/j.apenergy.2016.09.054

British Petroleum P.L.C. (2020). Statistical Review of World Energy 2020. Globally Consistent Data on World Energy Markets. 69, 66. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html

CELEC. (2020). CELEC EP Generates And Transmits More Than 90 Percent of The Clean Electricity Consumed By The Country And Exports To Neighboring Countries. https://www.celec.gob.ec/hidroagoyan/index.php/sala-de-prensa/noticias/722-celec-ep-genera-y-transmite-mas-del-90-por-ciento-de-la-energia-electrica-limpia-que-consume-el-pais-y-exporta-a-los-

Calderón, S., Alvarez, A. C., Loboguerrero, A. M., Arango, S., Calvin, K., Kober, T., Daenzer, K., & Fisher-Vanden, K. (2014). Achieving CO2 Reductions In Colombia : Effects of Carbon Taxes And Abatement Targets. Energy Economics, 56, 575-586. https://doi.org/10.1016/j.eneco.2015.05.010

Carvajal, P. E., Anandarajah, G., Mulugetta, Y., & Dessens, O. (2017). Assessing Uncertainty of Climate Change Impacts on Long-Term Hydropower Generation Using The CMIP5 Ensemble-The Case of Ecuador. Climatic Change, 144(4), 611-624. https://doi.org/10.1007/s10584-017-2055-4

Carvajal, P. E., Li, F. G. N., Soria, R., Cronin, J., Anandarajah, G., & Mulugetta, Y. (2019). Large Hydropower, Decarbonisation And Climate Change Uncertainty: Modelling Power Sector Pathways For Ecuador. Energy Strategy Reviews, 86-99. https://doi.org/10.1016/j.esr.2018.12.008

Cavazzini, G., Santolin, A., Pavesi, G., & Ardizzon, G. (2016). Accurate Estimation Model For Small And Micro Hydropower Plants Costs In Hybrid Energy Systems Modelling. Energy, 103, 746-757. https://doi.org/10.1016/j.energy.2016.03.024

Chiang, J. L., Yang, H. C., Chen, Y. R., & Lee, M. H. (2013). Potential Impact of Climate Change on Hydropower Generation In Southern Taiwan. Energy Procedia, 40, 34-37. https://doi.org/10.1016/j.egypro.2013.08.005

Chilkoti, V., Bolisetti, T., & Balachandar, R. (2017). Climate Change Impact Assessment on Hydropower Generation Using Multi-Model Climate Ensemble. Renewable Energy, 109, 510-517. https://doi.org/10.1016/j.renene.2017.02.041

De Queiroz, A. R., Faria, V. A. D., Lima, L. M. M., & Lima, J. W. M. (2019). Hydropower Revenues Under The Threat of Climate Change In Brazil. Renewable Energy, 133, 873-882. https://doi.org/10.1016/j.renene.2018.10.050

De Faria, F. A. M., & Jaramillo, P. (2017). The Future Of Power Generation In Brazil : An Analysis of Alternatives To Amazonian Hydropower Development. Energy For Sustainable Development, 41, 24-35. https://doi.org/10.1016/j.esd.2017.08.001

De Faria, F. A. M., Davis, A., Severnini, E., & Jaramillo, P. (2017). The Local Socio-Economic Impacts of Large Hydropower Plant Development In A Developing Country. Energy Economics, 67, 533-544. https://doi.org/10.1016/j.eneco.2017.08.025

Escribano, G. (2013). Ecuador's Energy Policy Mix : Development Versus Conservation And Nationalism With Chinese Loans. Energy Policy, 57, 152-159. https://doi.org/10.1016/j.enpol.2013.01.022

Guerra, O. J., Tejada, D. A., & Reklaitis, G. v. (2019). Climate Change Impacts And Adaptation Strategies For A Hydro-Dominated Power System Via Stochastic Optimization. Applied Energy, 233-234, 584-598. https://doi.org/10.1016/j.apenergy.2018.10.045

Hamududu, B., & Killingtveit, A. (2012). Assessing Climate Change Impacts on Global Hydropower. Energies, 5(2), 305-322. https://doi.org/10.3390/en5020305

IRENA. (2020). Renewable Energy Statistics 2020. Renewable Hydropower (Including Mixed Plants). www.irena.org

International Energy Agency. (2010). Comparative Study On Rural Electrification Policies In Emerging Economies : Keys To Successful Policies 48 (2). https://www.oecd-ilibrary.org/docserver/5kmh3nj5rzs4-en.pdf?expires=1650862130&id=id&accname=guest&checksum=5D8E4207CFB230693D0FCB3CD7A2BD80

International Hydropower Association. (2018a). Hydropower Sustainability Assessment Protocol. In Family Court Review, 56(3). https://doi.org/10.1111/fcre.12351

International Hydropower Association. (2018b). Hydropower Sustainability Guidelines On Good International Industry Practice. International Hydropower Association, 187. www.hydrosustainability.org

International Hydropower Association. (2020a). Hydropower Status Report 2020. International Hydropower Association, 1-83. https://www.hydropower.org/sites/default/files/publications-docs/2019_hydropower_status_report_0.pdf

International Hydropower Association. (2020b). Hydropower Status Report 2020 : Sector Trends And Insights. https://www.hydropower.org/sites/default/files/publications-docs/2019_hydropower_status_report_0.pdf

International Hydropower Association. (2021). Hydropower Status Report 2021 : Sector Trends And Insights. https://www.hydropower.org/publications/2021-hydropower-status-report

Jabbari, A. A., & Nazemi, A. (2019). Alterations In Canadian Hydropower Production Potential Due To Continuation of Historical Trends In Climate Variables. Resources, 8(4). https://doi.org/10.3390/resources8040163

Jakob, M., Soria, R., Trinidad, C., Edenhofer, O., Bak, C., Bouille, D., Buira, D., Carlino, H., Gutman, V., Hübner, C., Knopf, B., Lucena, A., Santos, L., Scott, A., Steckel, J. C., Tanaka, K., Vogt-Schilb, A., & Yamada, K. (2019). Green Fiscal Reform For A Just Energy Transition In Latin America. Economics, 13. https://doi.org/10.5018/economics-ejournal.ja.2019-17

Kao, S. C., Sale, M. J., Ashfaq, M., Uria Martinez, R., Kaiser, D. P., Wei, Y., & Diffenbaugh, N. S. (2015). Projecting Changes In Annual Hydropower Generation Using Regional Runoff Data : An Assessment of The United States Federal Hydropower Plants. Energy, 80, 239-250. https://doi.org/10.1016/j.energy.2014.11.066

Kelly, S. (2019). Megawatts Mask Impacts : Small Hydropower And Knowledge Politics In The Puelwillimapu, Southern Chile. Energy Research And Social Science, 224-235. https://doi.org/10.1016/j.erss.2019.04.014

Kelly-Richards, S., Silber-Coats, N., Crootof, A., Tecklin, D., & Bauer, C. (2017). Governing The Transition To Renewable Energy : A Review Of Impacts And Policy Issues In The Small Hydropower Boom. Energy Policy, 101, 251-264. https://doi.org/10.1016/j.enpol.2016.11.035

Killingtveit, A. (2018). Hydropower. Managing Global Warming An Interface of Technology and Human Issues, 265-315. https://doi.org/10.1016/B978-0-12-814104-5.00008-9

La Revista Energética de Chile. (2020). Hidroelectricidad : Oportunidades Para Una Nueva Fase En Chile. https://www.revistaei.cl/reportajes/hidroelectricidad-oportunidades-para-una-nueva-fase/#

Lehner, B., Czisch, G., & Vassolo, S. (2005). The Impact of Global Change on The Hydropower Potential of Europe : A Model-Based Analysis. Energy Policy, 33(7), 839-855. https://doi.org/10.1016/j.enpol.2003.10.018

Li, X. J., Zhang, J., & Xu, L. Y. (2015). An Evaluation of Ecological Losses From Hydropower Development In Tibet. Ecological Engineering, 76, 178-185. https://doi.org/10.1016/j.ecoleng.2014.03.034

Llamosas, C., & Sovacool, B. K. (2021). The Future of Hydropower ? A Systematic Review Of The Drivers, Benefits And Governance Dynamics Of Transboundary Dams. Renewable And Sustainable Energy Reviews, 137(0321), 110-124. https://doi.org/10.1016/j.rser.2020.110495

Lucena, A. F. P., Hejazi, M., Vasquez-Arroyo, E., Turner, S., Köberle, A. C., Daenzer, K., Rochedo, P. R. R., Kober, T., Cai, Y., Beach, R. H., Gernaat, D., van Vuuren, D. P., & van der Zwaan, B. (2018). Interactions Between Climate Change Mitigation And Adaptation : The Case of Hydropower In Brazil. Energy, 164, 1161-1177. https://doi.org/10.1016/j.energy.2018.09.005

López-González, A., Ferrer-Martí, L., & Domenech, B. (2019). Long-Term Sustainability Assessment Of Micro-Hydro Projects : Case Studies From Venezuela. Energy Policy, 131, 120-130. https://doi.org/10.1016/j.enpol.2019.04.030

MERNNR. (2018). National Energy Efficiency Plan. 2018. https://www.celec.gob.ec/hidroagoyan/images/PLANEE_INGLES/NationalEnergyEfficiencyPlan20162035_2017-09-01_16-00-26.html

Mayeda, A. M., & Boyd, A. D. (2020). Factors Influencing Public Perceptions of Hydropower Projects : A Systematic Literature Review. Renewable And Sustainable Energy Reviews, 121, 109713. https://doi.org/10.1016/j.rser.2020.109713

Minville, M., Brissette, F., Krau, S., & Leconte, R. (2009). Adaptation To Climate Change In The Management of A Canadian Water-Resources System Exploited For Hydropower. Water Resources Management, 23(14), 2965-2986. https://doi.org/10.1007/s11269-009-9418-1

Naranjo-Silva, S., & Álvarez del Castillo, J. (2021). Hydropower : Projections In A Changing Climate And Impacts By This "Clean" Source. Cienciamérica, 10(2), 32. https://doi.org/10.33210/ca.v10i2.363

Naranjo-Silva, S., Punina, J., & Álvarez Del Castillo, J. (2022). Comparative Cost Per Kilowatt of The Latest Hydropower Projects In Ecuador. Ingenio Journal, 5(1), 1-14. https://doi.org/10.18779/ingenio.v5i1.473

Palacios-Fonseca et. Al., A. Alicia. (2017). Infraestructura Hidroeléctrica Actual De México. https://doi.org/978-607-9368-93-7

Pietrosemoli, L., & Rodríguez-Monroy, C. (2019). The Venezuelan Energy Crisis : Renewable Energies In The Transition Towards Sustainability. Renewable And Sustainable Energy Reviews, 105, 415-426. https://doi.org/10.1016/j.rser.2019.02.014

Rasul, G., Neupane, N., Hussain, A., & Pasakhala, B. (2019). Beyond Hydropower: Towards An Integrated Solution For Water, Energy And Food Security In South Asia. International Journal of Water Resources Development, 00(00), 1-25. https://doi.org/10.1080/07900627.2019.1579705

Rivera-González, L., Bolonio, D., Mazadiego, L. F., Naranjo-Silva, S., & Escobar-Segovia, K. (2020). Long-Term Forecast of Energy And Fuels Demand Towards A Sustainable Road Transport Sector In Ecuador (2016-2035) : A LEAP Model Application. Sustainability, 12(2). https://doi.org/10.3390/su12020472

Scherer, L., & Pfister, S. (2016). Global Water Footprint Assessment of Hydropower. Renewable Energy, 99, 711-720. https://doi.org/10.1016/j.renene.2016.07.021

Sovacool, B. K., & Walter, G. (2019). Internationalizing The Political Economy Of Hydroelectricity : Security, Development And Sustainability In Hydropower States. Review of International Political Economy, 26(1), 49-79. https://doi.org/10.1080/09692290.2018.1511449

Tarroja, B., Forrest, K., Chiang, F., AghaKouchak, A., & Samuelsen, S. (2019). Implications Of Hydropower Variability From Climate Change For A Future, Highly-Renewable Electric Grid In California. Applied Energy, 237, 353-366. https://doi.org/10.1016/j.apenergy.2018.12.079

Tobin, I., Greuell, W., Jerez, S., Ludwig, F., Vautard, R., Van Vliet, M. T. H., & Breón, F. M. (2018). Vulnerabilities And Resilience of European Power Generation To 1.5 °C, 2 °C And 3 °C Warming. Environmental Research Letters, 13(4), 1-10. https://doi.org/10.1088/1748-9326/aab211

Van Vliet, M., van Beek, L., Eisner, S., Flörke, M., Wada, Y., & Bierkens, M. F. P. (2016). Multi-Model Assessment of Global Hydropower And Cooling Water Discharge Potential Under Climate Change. Global Environmental Change, 40, 156-170. https://doi.org/10.1016/j.gloenvcha.2016.07.007

Wang, J., Chen, X., Liu, Z., Frans, V. F., Xu, Z., Qiu, X., Xu, F., & Li, Y. (2019). Assessing The Water And Carbon Footprint of Hydropower Stations At A National Scale. Science of The Total Environment, 676, 595-612. https://doi.org/10.1016/j.scitotenv.2019.04.148

Downloads

Published

2022-04-26

How to Cite

Naranjo-Silva, S., & Alvarez del Castillo, J. (2022). THE AMERICAN CONTINENT HYDROPOWER DEVELOPMENT AND THE SUSTAINABILITY: A REVIEW. International Journal of Engineering Science Technologies, 6(2), 66–79. https://doi.org/10.29121/ijoest.v6.i2.2022.315