CDO/CO3O4 NANOCOMPOSITE AS AN EFFICIENT ELECTROCATALYST FOR OXYGEN EVOLUTION REACTION IN ALKALINE MEDIA

Authors

  • Abdul Hanan Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, PR China https://orcid.org/0000-0001-6162-0519
  • Abdul Jaleel Laghari Department of Metallurgy and Materials Engineering, MUET, Jamshoro, Pakistan
  • Muhammad Yameen Solangi Department of Metallurgy and Materials Engineering, MUET, Jamshoro
  • Umair Aftab Department of Metallurgy and Materials Engineering, MUET, Jamshoro
  • Muhammad Ishaque Abro Department of Metallurgy and Materials Engineering, MUET, Jamshoro
  • Dianxue Cao Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, PR China
  • Mukhtiar Ahmed Institute of Process Engineering, University of Chinese Academy of Sciences, PR China
  • Muhammad Nazim Lakhan School of Chemistry and Materials Science, University of Science and Technology of China, PR China
  • Amir Ali College of Underwater Acoustic Engineering, Harbin Engineering University, PR China
  • Ali Asif College of Nuclear Science and Technology, Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, PR, China
  • Altaf Hussain Shar School of Chemistry and Materials Science, University of Science and Technology of China, PR China

DOI:

https://doi.org/10.29121/ijoest.v6.i1.2022.259

Keywords:

Electrochemistry, Oxygen Evolution Reaction, Electrocatalyst, Cobalt Oxide, Cadmium Oxide

Abstract

Electrochemical water splitting is one of the promising way to enhance energy with less outflow. In this regard different electrocatalysts have been reported for Oxygen evolution reaction (OER) to get alternative of noble metal based electrocatalysts. In this work, we have introduced Cadmium-oxide/Cobalt-oxide (CdO/Co3O4) nanocomposite by co-precipitation chemical strategy with impressive OER performance in alkaline medium. Almost 310 mV overpotential value is required to achieve 10 mA/cm2 current density with Tafel slope value of 62 mV/Dec. The as synthesized nanocomposite has stability of 6h as its longer electrochemical performance

Downloads

Download data is not yet available.

References

Aftab, U., Tahira, A., Samo, A. H., Abro, M. I., Baloch, M. M., Kumar, M., . . . Ibupoto, Z. H. (2020). Mixed CoS2@Co3O4 composite material: An efficient nonprecious electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 45(27), 13805-13813. Retrieved from https://doi.org/10.1016/j.ijhydene.2020.03.131

Ahamad, T., Naushad, M., Hassan Mousa, R., Khalaf, N., & Alshehri, S. M. (2020). Synthesis and characterization cobalt phosphate embedded with N doped carbon for water splitting ORR and OER. Journal of King Saud University - Science, 32(6), 2826-2830. Retrieved from https://doi.org/10.1016/j.jksus.2020.07.004

Ahmed, M., Lakhan, M. N., Shar, A. H., Zehra, I., Hanan, A., Ali, I., . . . Wang, J. (2022). Electrochemical performance of grown layer of Ni (OH)2 on nickel foam and treatment with phosphide and selenide for efficient water splitting. Journal of the Indian Chemical Society, 99(1), 100281. Retrieved from https://doi.org/10.1016/j.jics.2021.100281

Bhatti, A. L., Tahira, A., Gradone, A., Mazzaro, R., Morandi, V., aftab, U., . . . Ibupoto, Z. H. (2021). Nanostructured Co3O4 electrocatalyst for OER: The role of organic polyelectrolytes as soft templates. Electrochimica Acta, 398, 139338. Retrieved from https://doi.org/10.1016/j.electacta.2021.139338

Chen, M., Wang, L., Yang, H., Zhao, S., Xu, H., & Wu, G. (2018). Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review. Journal of Power Sources, 375, 277-290. Retrieved from https://doi.org/10.1016/j.jpowsour.2017.08.062

Cheng, N., Xue, Y., Liu, Q., Tian, J., Zhang, L., Asiri, A. M., & Sun, X. (2015). Cu/(Cu(OH)2-CuO) core/shell nanorods array: in-situ growth and application as an efficient 3D oxygen evolution anode. Electrochimica Acta, 163, 102-106. Retrieved from https://doi.org/10.1016/j.electacta.2015.02.099

Ding, J., Ji, S., Wang, H., Gai, H., Liu, F., Linkov, V., & Wang, R. (2019). Mesoporous nickel-sulfide/nickel/N-doped carbon as HER and OER bifunctional electrocatalyst for water electrolysis. International Journal of Hydrogen Energy, 44(5), 2832-2840. Retrieved from https://doi.org/10.1016/j.ijhydene.2018.12.031

Gharib, A., & Arab, A. (2021). Improved formic acid oxidation using electrodeposited Pd-Cd electrocatalysts in sulfuric acid solution. International Journal of Hydrogen Energy, 46(5), 3865-3875. Retrieved from https://doi.org/10.1016/j.ijhydene.2020.10.202

He, L., Liu, J., Hu, B., Liu, Y., Cui, B., Peng, D., . . . Liu, B. (2019). Cobalt oxide doped with titanium dioxide and embedded with carbon nanotubes and graphene-like nanosheets for efficient trifunctional electrocatalyst of hydrogen evolution, oxygen reduction, and oxygen evolution reaction. Journal of Power Sources, 414, 333-344. Retrieved from https://doi.org/10.1016/j.jpowsour.2019.01.020

Hou, C.-C., Wang, C.-J., Chen, Q.-Q., Lv, X.-J., Fu, W.-F., & Chen, Y. (2016). Rapid synthesis of ultralong Fe(OH)3:Cu(OH)2 core-shell nanowires self-supported on copper foam as a highly efficient 3D electrode for water oxidation. Chemical Communications, 52(100), 14470-14473. Retrieved from https://doi.org/10.1039/C6CC08780A

Ibupoto, Z. H., Tahira, A., Shah, A. A., Aftab, U., Solangi, M. Y., Leghari, J. A., . . . Vigolo, B. (2021). NiCo2O4 nanostructures loaded onto pencil graphite rod: An advanced composite material for oxygen evolution reaction. International Journal of Hydrogen Energy. Retrieved from https://doi.org/10.1016/j.ijhydene.2021.12.024

Kang, T., & Kim, J. (2021). Optimal cobalt-based catalyst containing high-ratio of oxygen vacancy synthesized from metal-organic-framework (MOF) for oxygen evolution reaction (OER) enhancement. Applied Surface Science, 560, 150035. Retrieved from https://doi.org/10.1016/j.apsusc.2021.150035

Kim, J. E., Bae, K.-k., Park, C.-s., Jeong, S.-u., Kim, J.-w., Yoon, J., . . . Kang, K. S. (2021). Nickel-iron hydroxide oxygen evolution electrocatalysts prepared by a simple chemical bath deposition method. International Journal of Hydrogen Energy, 46(39), 20313-20324. Retrieved from https://doi.org/10.1016/j.ijhydene.2021.03.172

Lim, J., Jung, J.-W., Kim, N.-Y., Lee, G. Y., Lee, H. J., Lee, Y., . . . Kim, S. O. (2020). N2-dopant of graphene with electrochemically switchable bifunctional ORR/OER catalysis for Zn-air battery. Energy Storage Materials, 32, 517-524. Retrieved from https://doi.org/10.1016/j.ensm.2020.06.034

Liu, W.-J., Wang, H., Lee, J., Kwon, E., Thanh, B. X., You, S., . . . Lin, K.-Y. A. (2021). Investigating crystal plane effect of Co3O4 with various morphologies on catalytic activation of monopersulfate for degradation of phenol in water. Separation and Purification Technology, 276, 119368. Retrieved from https://doi.org/10.1016/j.seppur.2021.119368

Majhi, K. C., & Yadav, M. (2021). Bimetallic chalcogenide nanocrystallites as efficient electrocatalyst for overall water splitting. Journal of Alloys and Compounds, 852, 156736. Retrieved from https://doi.org/10.1016/j.jallcom.2020.156736

Martini, B. K., & Maia, G. (2021). Using a combination of Co, Mo, and Pt oxides along with graphene nanoribbon and MoSe2 as efficient catalysts for OER and HER. Electrochimica Acta, 391, 138907. Retrieved from https://doi.org/10.1016/j.electacta.2021.138907

Peng, L., Shah, S. S. A., & Wei, Z. (2018). Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction. Chinese Journal of Catalysis, 39(10), 1575-1593. Retrieved from https://doi.org/10.1016/S1872-2067(18)63130-4

Rubin, A. E., & Li, Y. (2019). Formation and destruction of magnetite in CO3 chondrites and other chondrite groups. Geochemistry, 79(4), 125528. Retrieved from https://doi.org/10.1016/j.chemer.2019.07.009

Su, Y., Liu, H., Li, C., Liu, J., Song, Y., & Wang, F. (2019). Hydrothermal-assisted defect engineering in spinel Co3O4 nanostructures as bifunctional catalysts for oxygen electrode. Journal of Alloys and Compounds, 799, 160-168. Retrieved from https://doi.org/10.1016/j.jallcom.2019.05.331

Tian, Y., Li, S., Huang, R., Wei, Z., Ji, X., Liu, P., . . . Jing, Q. (2022). Rational construction of core-branch Co3O4@CoNi-layered double hydroxide nanoarrays as efficient electrocatalysts for oxygen evolution reaction. Journal of Alloys and Compounds, 899, 163259. Retrieved from https://doi.org/10.1016/j.jallcom.2021.163259

Tong, Y., Liu, H., Dai, M., Xiao, L., & Wu, X. (2020). Metal-organic framework derived Co3O4/PPy bifunctional electrocatalysts for efficient overall water splitting. Chinese Chemical Letters, 31(9), 2295-2299. Retrieved from https://doi.org/10.1016/j.cclet.2020.03.029

Wang, J., Gao, Y., You, T. L., & Ciucci, F. (2018). Bimetal-decorated nanocarbon as a superior electrocatalyst for overall water splitting. Journal of Power Sources, 401, 312-321. Retrieved from https://doi.org/10.1016/j.jpowsour.2018.09.011

Younis, M. A., & Hou, Y. (2020). Chapter 10 - Nanocarbon-Based Hybrids as Electrocatalysts for Hydrogen and Oxygen Evolution From Water Splitting. In Q. Zhao (Ed.), Advanced Nanomaterials for Pollutant Sensing and Environmental Catalysis (pp. 379-418): Elsevier. Retrieved from https://doi.org/10.1016/B978-0-12-814796-2.00010-1

Zhang, S., Wei, N., Yao, Z., Zhao, X., Du, M., & Zhou, Q. (2021). Oxygen vacancy-based ultrathin Co3O4 nanosheets as a high-efficiency electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 46(7), 5286-5295. Retrieved from https://doi.org/10.1016/j.ijhydene.2020.11.072

Zhong, Q.-S., Xia, W.-Y., Liu, B.-C., Xu, C.-W., & Li, N. (2019). Co0.85Se on three-dimensional hierarchical porous graphene-like carbon for highly effective oxygen evolution reaction. International Journal of Hydrogen Energy, 44(21), 10182-10189. Retrieved from https://doi.org/10.1016/j.ijhydene.2019.03.003

Downloads

Published

2022-01-15

How to Cite

Hanan, A., Laghari, A. J., Solangi, M. Y., Aftab, U., Abro, M. I., Cao, D., Ahmed, M., Lakhan, M. N., Ali, A., Asif, A., & Shar, A. H. (2022). CDO/CO3O4 NANOCOMPOSITE AS AN EFFICIENT ELECTROCATALYST FOR OXYGEN EVOLUTION REACTION IN ALKALINE MEDIA. International Journal of Engineering Science Technologies, 6(1), 1–10. https://doi.org/10.29121/ijoest.v6.i1.2022.259