CDO/CO3O4 NANOCOMPOSITE AS AN EFFICIENT ELECTROCATALYST FOR OXYGEN EVOLUTION REACTION IN ALKALINE MEDIA
DOI:
https://doi.org/10.29121/ijoest.v6.i1.2022.259Keywords:
Electrochemistry, Oxygen Evolution Reaction, Electrocatalyst, Cobalt Oxide, Cadmium OxideAbstract
Electrochemical water splitting is one of the promising way to enhance energy with less outflow. In this regard different electrocatalysts have been reported for Oxygen evolution reaction (OER) to get alternative of noble metal based electrocatalysts. In this work, we have introduced Cadmium-oxide/Cobalt-oxide (CdO/Co3O4) nanocomposite by co-precipitation chemical strategy with impressive OER performance in alkaline medium. Almost 310 mV overpotential value is required to achieve 10 mA/cm2 current density with Tafel slope value of 62 mV/Dec. The as synthesized nanocomposite has stability of 6h as its longer electrochemical performance
Downloads
References
Aftab, U., Tahira, A., Samo, A. H., Abro, M. I., Baloch, M. M., Kumar, M., . . . Ibupoto, Z. H. (2020). Mixed CoS2@Co3O4 composite material: An efficient nonprecious electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 45(27), 13805-13813. Retrieved from https://doi.org/10.1016/j.ijhydene.2020.03.131
Ahamad, T., Naushad, M., Hassan Mousa, R., Khalaf, N., & Alshehri, S. M. (2020). Synthesis and characterization cobalt phosphate embedded with N doped carbon for water splitting ORR and OER. Journal of King Saud University - Science, 32(6), 2826-2830. Retrieved from https://doi.org/10.1016/j.jksus.2020.07.004
Ahmed, M., Lakhan, M. N., Shar, A. H., Zehra, I., Hanan, A., Ali, I., . . . Wang, J. (2022). Electrochemical performance of grown layer of Ni (OH)2 on nickel foam and treatment with phosphide and selenide for efficient water splitting. Journal of the Indian Chemical Society, 99(1), 100281. Retrieved from https://doi.org/10.1016/j.jics.2021.100281
Bhatti, A. L., Tahira, A., Gradone, A., Mazzaro, R., Morandi, V., aftab, U., . . . Ibupoto, Z. H. (2021). Nanostructured Co3O4 electrocatalyst for OER: The role of organic polyelectrolytes as soft templates. Electrochimica Acta, 398, 139338. Retrieved from https://doi.org/10.1016/j.electacta.2021.139338
Chen, M., Wang, L., Yang, H., Zhao, S., Xu, H., & Wu, G. (2018). Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review. Journal of Power Sources, 375, 277-290. Retrieved from https://doi.org/10.1016/j.jpowsour.2017.08.062
Cheng, N., Xue, Y., Liu, Q., Tian, J., Zhang, L., Asiri, A. M., & Sun, X. (2015). Cu/(Cu(OH)2-CuO) core/shell nanorods array: in-situ growth and application as an efficient 3D oxygen evolution anode. Electrochimica Acta, 163, 102-106. Retrieved from https://doi.org/10.1016/j.electacta.2015.02.099
Ding, J., Ji, S., Wang, H., Gai, H., Liu, F., Linkov, V., & Wang, R. (2019). Mesoporous nickel-sulfide/nickel/N-doped carbon as HER and OER bifunctional electrocatalyst for water electrolysis. International Journal of Hydrogen Energy, 44(5), 2832-2840. Retrieved from https://doi.org/10.1016/j.ijhydene.2018.12.031
Gharib, A., & Arab, A. (2021). Improved formic acid oxidation using electrodeposited Pd-Cd electrocatalysts in sulfuric acid solution. International Journal of Hydrogen Energy, 46(5), 3865-3875. Retrieved from https://doi.org/10.1016/j.ijhydene.2020.10.202
He, L., Liu, J., Hu, B., Liu, Y., Cui, B., Peng, D., . . . Liu, B. (2019). Cobalt oxide doped with titanium dioxide and embedded with carbon nanotubes and graphene-like nanosheets for efficient trifunctional electrocatalyst of hydrogen evolution, oxygen reduction, and oxygen evolution reaction. Journal of Power Sources, 414, 333-344. Retrieved from https://doi.org/10.1016/j.jpowsour.2019.01.020
Hou, C.-C., Wang, C.-J., Chen, Q.-Q., Lv, X.-J., Fu, W.-F., & Chen, Y. (2016). Rapid synthesis of ultralong Fe(OH)3:Cu(OH)2 core-shell nanowires self-supported on copper foam as a highly efficient 3D electrode for water oxidation. Chemical Communications, 52(100), 14470-14473. Retrieved from https://doi.org/10.1039/C6CC08780A
Ibupoto, Z. H., Tahira, A., Shah, A. A., Aftab, U., Solangi, M. Y., Leghari, J. A., . . . Vigolo, B. (2021). NiCo2O4 nanostructures loaded onto pencil graphite rod: An advanced composite material for oxygen evolution reaction. International Journal of Hydrogen Energy. Retrieved from https://doi.org/10.1016/j.ijhydene.2021.12.024
Kang, T., & Kim, J. (2021). Optimal cobalt-based catalyst containing high-ratio of oxygen vacancy synthesized from metal-organic-framework (MOF) for oxygen evolution reaction (OER) enhancement. Applied Surface Science, 560, 150035. Retrieved from https://doi.org/10.1016/j.apsusc.2021.150035
Kim, J. E., Bae, K.-k., Park, C.-s., Jeong, S.-u., Kim, J.-w., Yoon, J., . . . Kang, K. S. (2021). Nickel-iron hydroxide oxygen evolution electrocatalysts prepared by a simple chemical bath deposition method. International Journal of Hydrogen Energy, 46(39), 20313-20324. Retrieved from https://doi.org/10.1016/j.ijhydene.2021.03.172
Lim, J., Jung, J.-W., Kim, N.-Y., Lee, G. Y., Lee, H. J., Lee, Y., . . . Kim, S. O. (2020). N2-dopant of graphene with electrochemically switchable bifunctional ORR/OER catalysis for Zn-air battery. Energy Storage Materials, 32, 517-524. Retrieved from https://doi.org/10.1016/j.ensm.2020.06.034
Liu, W.-J., Wang, H., Lee, J., Kwon, E., Thanh, B. X., You, S., . . . Lin, K.-Y. A. (2021). Investigating crystal plane effect of Co3O4 with various morphologies on catalytic activation of monopersulfate for degradation of phenol in water. Separation and Purification Technology, 276, 119368. Retrieved from https://doi.org/10.1016/j.seppur.2021.119368
Majhi, K. C., & Yadav, M. (2021). Bimetallic chalcogenide nanocrystallites as efficient electrocatalyst for overall water splitting. Journal of Alloys and Compounds, 852, 156736. Retrieved from https://doi.org/10.1016/j.jallcom.2020.156736
Martini, B. K., & Maia, G. (2021). Using a combination of Co, Mo, and Pt oxides along with graphene nanoribbon and MoSe2 as efficient catalysts for OER and HER. Electrochimica Acta, 391, 138907. Retrieved from https://doi.org/10.1016/j.electacta.2021.138907
Peng, L., Shah, S. S. A., & Wei, Z. (2018). Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction. Chinese Journal of Catalysis, 39(10), 1575-1593. Retrieved from https://doi.org/10.1016/S1872-2067(18)63130-4
Rubin, A. E., & Li, Y. (2019). Formation and destruction of magnetite in CO3 chondrites and other chondrite groups. Geochemistry, 79(4), 125528. Retrieved from https://doi.org/10.1016/j.chemer.2019.07.009
Su, Y., Liu, H., Li, C., Liu, J., Song, Y., & Wang, F. (2019). Hydrothermal-assisted defect engineering in spinel Co3O4 nanostructures as bifunctional catalysts for oxygen electrode. Journal of Alloys and Compounds, 799, 160-168. Retrieved from https://doi.org/10.1016/j.jallcom.2019.05.331
Tian, Y., Li, S., Huang, R., Wei, Z., Ji, X., Liu, P., . . . Jing, Q. (2022). Rational construction of core-branch Co3O4@CoNi-layered double hydroxide nanoarrays as efficient electrocatalysts for oxygen evolution reaction. Journal of Alloys and Compounds, 899, 163259. Retrieved from https://doi.org/10.1016/j.jallcom.2021.163259
Tong, Y., Liu, H., Dai, M., Xiao, L., & Wu, X. (2020). Metal-organic framework derived Co3O4/PPy bifunctional electrocatalysts for efficient overall water splitting. Chinese Chemical Letters, 31(9), 2295-2299. Retrieved from https://doi.org/10.1016/j.cclet.2020.03.029
Wang, J., Gao, Y., You, T. L., & Ciucci, F. (2018). Bimetal-decorated nanocarbon as a superior electrocatalyst for overall water splitting. Journal of Power Sources, 401, 312-321. Retrieved from https://doi.org/10.1016/j.jpowsour.2018.09.011
Younis, M. A., & Hou, Y. (2020). Chapter 10 - Nanocarbon-Based Hybrids as Electrocatalysts for Hydrogen and Oxygen Evolution From Water Splitting. In Q. Zhao (Ed.), Advanced Nanomaterials for Pollutant Sensing and Environmental Catalysis (pp. 379-418): Elsevier. Retrieved from https://doi.org/10.1016/B978-0-12-814796-2.00010-1
Zhang, S., Wei, N., Yao, Z., Zhao, X., Du, M., & Zhou, Q. (2021). Oxygen vacancy-based ultrathin Co3O4 nanosheets as a high-efficiency electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 46(7), 5286-5295. Retrieved from https://doi.org/10.1016/j.ijhydene.2020.11.072
Zhong, Q.-S., Xia, W.-Y., Liu, B.-C., Xu, C.-W., & Li, N. (2019). Co0.85Se on three-dimensional hierarchical porous graphene-like carbon for highly effective oxygen evolution reaction. International Journal of Hydrogen Energy, 44(21), 10182-10189. Retrieved from https://doi.org/10.1016/j.ijhydene.2019.03.003