DETERMINATION OF RADIOLOGICAL PARAMETERS OF SOME ACTIVE PHARMACEUTICAL INGREDIENTS USING WINXCOM SOFTWARE IN THE ENERGY RANGE 1KeV TO 100KeV

Authors

  • Arome Aruwa Department of Science Laboratory Technology, Federal Polytechnic, Idah, Nigeria
  • Philibus Musa Gyuk Department of Physics, Kaduna State University, Kaduna, Nigeria
  • Columbus Tobechukwu Eze Department of Science Laboratory Technology, Federal Polytechnic, Idah, Nigeria
  • Suleiman Isah Department of Science Laboratory Technology, Federal Polytechnic, Idah, Nigeria
  • Achor Mathias Ogwo Department of Science Laboratory Technology, Federal Polytechnic, Idah, Nigeria
  • Ashibi Martha Ali Adejo Department of Science Laboratory Technology, Federal Polytechnic, Idah, Nigeria https://orcid.org/0000-0003-3914-774X

DOI:

https://doi.org/10.29121/ijoest.v5.i5.2021.208

Keywords:

Effective Atomic Number, Electron Density, Active Pharmaceutical Ingredient’s, Winxcom, Pharmaceutical, Mass Attenuation Coefficient

Abstract

The effective atomic number, electron density and mass attenuation coefficient of some selected active pharmaceutical ingredients such as Diclofenac Sodium, Femotidine, Alprazolam, Amiodar, Amiodarone, Ciprofloxacin, and Nimesulide have been calculated over the energy range from 1 keV to 100 GeV for total and partial photon interactions by using WinXCom. The obtained data shows that the change in mass attenuation coefficient and electron density varies with energy and chemical composition of the active pharmaceutical ingredients (API’s) in drugs. The results in the variation of photon interaction with energy and effective atomic number of the API’s in drug are shown in the logarithmic graphs.

Downloads

Download data is not yet available.

References

Bethe, A. and Ashkin, J. (1953) Experimental Nuclear Physics, E. Segre, ed. John Wiley & Sons: New York.

Berger M. and Hubbell J. H. (1987) XCOM: photon cross sections database, Web Version 1.2. Available:http:// physics.nist.gov/xcom National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. (Originally published as NBSIR 87-3597 ''XCOM: Photon Cross Sections on a Personal Computer'');. Retrieved from https://doi.org/10.2172/6016002

Berger M. and Hubbell J. H. (1999) XCOM: photon cross sections database, Web Version 1.2. Available:http:// physics.nist.gov/xcom National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. (Originally published as NBSIR 87-3597 ''XCOM: Photon Cross Sections on a Personal Computer'').

Burcu, A. and Salih, Z. E. (2014) The Mass Attenuation Coefficients, Electronic Atomic and Molecular Cross Section and Electron Densities for Compounds of Some Biomedically Important Elements at 59.5 KeV. Science and Technology of Nuclear Installations, Vol. 1, 1-8S Retrieved from https://doi.org/10.1155/2014/901465

Gerward, L., Guilbert, N., Jensen, K. B. and Levring, H. (2001) X-ray absorption in matter reengineering XCOM. Radiation Physics and Chemistry, 60, 23-24. Retrieved from https://doi.org/10.1016/S0969-806X(00)00324-8

Gerward, L., Guilbert, N., Jensen, K. B. and Levring H. (2004) WinXCom - a program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry, 71, 653-654. Retrieved from https://doi.org/10.1016/j.radphyschem.2004.04.040

Hine G. J. (1952) The effective atomic numbers of materials for various gamma ray Intercations. Physics Reviews, 85:725.

Hine G. J. (1952): Secondary electron emission and effective atomic numbers.

Nucleonics (1952), 10(1), , 9-15. Retrieved from https://doi.org/10.1253/circj1947.15.9-10_Cover1

Hubbell, J. H. (1999) Review of photon interaction cross section data in the medical and biological context. Physics in Medicine and Biology, 44, 1-22. Retrieved from https://doi.org/10.1088/0031-9155/44/1/001

Hubbell J. H. and Seltzer, S. M. (1995) Tables of X-ray mass attenuation coefficients and mass energy absorption coefficients 1 keV to 20MeV for elements Z = 1-92 and 48 additional substances of dosimetric interest, NISTIR; P 5632. Retrieved from https://doi.org/10.6028/NIST.IR.5632

Ingalagondi. P. K., Omnath P., Mathapati, G. B. and Shivraj G. G. Sankarappa, T. and Hanagodimath, S. M. (2017), Determination of Mass Attenuation Coefficients, Effective atomic number and Electron Density of Lumefantrine in the Energy Range 1 keV - 100 GeV. International Journal of Pure and Applied Researches, 4(1), 42-50

Jackson, D. F. and Hawkes, J. D. (1981), X-ray attenuation coefficients of elements and mixtures. Physics Reports, 70, 169-233. Retrieved from https://doi.org/10.1016/0370-1573(81)90014-4

Johns H. E. (1953), the Physics of Radiation Therapy. M. Friedman, ed. Charles C Thomas, Springfield. Pp 374-385.

Kadir Günoğlu (2018), Determination of the mass attenuation coefficients, effective atomic numbers and effective electron numbers of some concrete containing barites for 511, 835 and 1275 keV gamma rays. European Journal of Science and Technology, 14, 185-188 Retrieved from https://doi.org/10.31590/ejosat.453665

Kaginelli, S. B., Rajeshwari, T. Sharanabasappa, K. B. R. and Anilkumar, S. (2009), Effective atomic numbers and electron density of dosimetric materials. Journal of Medical Physics, 34(1), 176-179.Retrieved from https://doi.org/10.4103/0971-6203.54853

Kıran K. T. and Venkata R. K. (1997), Effective atomic numbers for materials of dosimetric interest. Radiation Physics and Chemistry; 50, 545-553. Retrieved from https://doi.org/10.1016/S0969-806X(97)00089-3

Manjunath, A. and Kerur B. R. (2015), Pharmaceutical Active Ingredients in Drugs through Radiological Parameters. Physical Science International Journal, 7(3), 186 - 191 Retrieved from https://doi.org/10.9734/PSIJ/2015/18029

Manohara, S. R., & Hanagodimath, S. M., Studies on effective atomic numbers and electron densities of essential amino acids in the energy range 1 keV- 100 GeV. Nuclear

Instruments and methods in physics research B, 258, 2007, 321-328. Retrieved from https://doi.org/10.1016/j.nimb.2007.02.101

Mayneord W. V. (1937), Acta-Unio Internationalis Contra Cancrum. 2, 271-282.

Roy, B., Chatterjee, B. K., Roy, S. C., Bhattacharya, N. and Choudhury, N. (1997), Photoelectric cross-section derived from measured total attenuation coefficient of photons near absorption edges, of heavier atoms. Applied Radiation Isotopes; 48, 785-78. Retrieved from https://doi.org/10.1016/S0969-8043(96)00321-1

Shivaramu R., Vijayakumar, R., Rajasekaran, L., and Ramamurthy, N. (2001), Effective atmoic number for photon energy absorption of some low-Z substances of dosimetric interest. Radiation Physics and Chemistry, 62, 371-377.Retrieved from https://doi.org/10.1016/S0969-806X(01)00221-3

Shivalinge G., Krishnaveni, S., Yashoda, T., Umesh, T.K. & Ramakrishna G. (2004), Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermo luminescent dosimetric compounds, PRAMANA, 63, 529-41. Retrieved from https://doi.org/10.1007/BF02704481

Singh, V. P. and Badiger, N. M. (2014), Gamma ray and neutron shielding properties of some alloy materials. Annals of Nuclear Energy, 64, 301-310 Retrieved from https://doi.org/10.1016/j.anucene.2013.10.003

Spiers, W. (1946), Effective Atomic Number and Energy Absorption in Tissues, British Journal of Radiology, 19, 52 - 63. Retrieved from https://doi.org/10.1259/0007-1285-19-218-52

Teli, M. T. and Chaudhari, M. (1996), The attenuation coefficient of ammonium chloride for 662 keV gamma radiations, measured for dilute solution. Radiation Physics and Chemistry, 47, 531-534.Retrieved from https://doi.org/10.1016/0969-806X(95)00162-Q

Downloads

Published

2021-10-15

How to Cite

Aruwa, A., Gyuk, P. M., Eze, C. T., Isah, S., Ogwo, A. M., & Adejo, A. M. A. (2021). DETERMINATION OF RADIOLOGICAL PARAMETERS OF SOME ACTIVE PHARMACEUTICAL INGREDIENTS USING WINXCOM SOFTWARE IN THE ENERGY RANGE 1KeV TO 100KeV. International Journal of Engineering Science Technologies, 5(5), 54–62. https://doi.org/10.29121/ijoest.v5.i5.2021.208