Robotic therapy, Brain-computer interface, electroencephalography, Functional electrical stimulation


The idea of robotic therapy has been considered as a possible rehabilitation strategy to facilitate recovery of the patients with disability and it can represent an efficient treatment. Brain-computer interface (BCI) is known as an advanced technology with great potential in therapeutic and assistive robots. This paper is presented to review the application of BCI in rehabilitation robotic systems through the combination of BCI with electroencephalography (EEG) and functional electrical stimulation (FES). For this purpose, the basic concept of each of BCI, EEG, and FES is introduced to give a general view of their function. In addition, the application of EEG-BCI and FES-BCI systems in therapeutic and assistive treatments is showed by providing a summary of different researches for each field. In the end, this document is terminated with a discussion about the arguments behind the studied topics and the future directions of advances in robotic therapy.


Download data is not yet available.


Ajiboye, A. B., Willett, F. R., Young, D. R., Memberg, W. D., Murphy, B. A., Miller, J. P., Walter, B. L., Sweet, J. A., Hoyen, H. A., Keith, M. W., Peckham, P. H., Simeral, J. D., Donoghue, J. P., Hochberg, L. R. & Kirsch, R. F. (2017). Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. The Lancet 389(10081), 1821–1830. Retrieved from 10.1016/s0140-6736(17)30601-3

Ang, K. K., Chua, K. S., Phua, K. S., Wang, C., Chin, Z. Y. & Kuah, C. W. (2015). A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke. Clin EEG Neurosci 46(4), 310–320.

Barsotti, M., Leonardis, D., Loconsole, C., Solazzi, M., Sotgiu, E. & Procopio, C. (2015). A full upper limb robotic exoskeleton for reaching and grasping rehabilitation triggered by MI-BCI. IEEE International Conference on Rehabilitation Robotics (ICORR) 11–14.

Basteris, A., Nijenhuis, S. M., Stienen, A. H., Buurke, J. H., Prange, G. B. & Amirabdollahian, F. (2014). Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. Journal of NeuroEngineering and Rehabilitation 11(1), 111. Retrieved from 10.1186/1743-0003-11-111

Biasiucci, A., Leeb, R., Iturrate, I., Perdikis, S., Al-Khodairy, A., Corbet, T., Schnider, A., Schmidlin, T., Zhang, H., Bassolino, M., Viceic, D., Vuadens, P., Guggisberg, A. G. & Millán, J. d. R. (2018). Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nature Communications 9(1), 2421. Retrieved from 10.1038/s41467-018-04673-z

Bockbrader, M., Annetta, N., Friedenberg, D., Schwemmer, M., Skomrock, N., Colachis, S., Zhang, M., Bouton, C., Rezai, A., Sharma, G. & Mysiw, W. J. (2019). Clinically Significant Gains in Skillful Grasp Coordination by an Individual With Tetraplegia Using an Implanted Brain-Computer Interface With Forearm Transcutaneous Muscle Stimulation. Archives of Physical Medicine and Rehabilitation 100(7), 1201–1217. Retrieved from 10.1016/j.apmr.2018.07.445

Bos, R. A., Haarman, C. J.W., Stortelder, T., Nizamis, K., Herder, J. L., Stienen, A. H.A. & Plettenburg, D. H. (2016). A structured overview of trends and technologies used in dynamic hand orthoses. Journal of NeuroEngineering and Rehabilitation 13(1), 62. Retrieved from 10.1186/s12984-016-0168-z

Chen, B., Zi, B., Qin, L. & Pan, Q. (2020). State-of-the-art research in robotic hip exoskeletons: A general review. Journal of Orthopaedic Translation 20, 4–13. Retrieved from 10.1016/

Chen, J., Jin, Z., Yao, J., Wang, H., Li, Y. & Ouyang, Z. (2020). Influence of the intelligent standing mobile robot on lower extremity physiology of complete spinal cord injury patients. Medicine in Novel Technology and Devices 7, 100045.

Chowdhury, A., Raza, H., Meena, Y. K., Dutta, A. & Prasad, G. (2019). An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation. Journal of Neuroscience Methods 312, 1–11. Retrieved from 10.1016/j.jneumeth.2018.11.010

Chung, B. P. H. (2017). Effectiveness of robotic-assisted gait training in stroke rehabilitation: A retrospective matched control study. Hong Kong Physiotherapy Journal 36, 10–16.

de Sousa, D. G., Harvey, L. A., Dorsch, S. & Glinsky, J. V. (2018). Interventions involving repetitive practice improve strength after stroke: a systematic review. Journal of Physiotherapy 64(4), 210–221. Retrieved from 10.1016/j.jphys.2018.08.004

Díaz, I., Gil, J. J. & Sánchez, E. (2011). Lower-Limb Robotic Rehabilitation: Literature Review and Challenges. Journal of Robotics 2011, 1–11. Retrieved from 10.1155/2011/759764

Do, A. H., Wang, P. T., King, C. E., Abiri, A. & Nenadic, Z. (2011). Brain-Computer Interface Controlled Functional Electrical Stimulation System for Ankle Movement. Journal of NeuroEngineering and Rehabilitation 8(1), 49. Retrieved from 10.1186/1743-0003-8-49

Duret, C., Grosmaire, A.-G. & Krebs, H. I. (2019). Robot-Assisted Therapy in Upper Extremity Hemiparesis: Overview of an Evidence-Based Approach. Frontiers in Neurology 10, 412. Retrieved from 10.3389/fneur.2019.00412

Frisoli, A., Procopio, C., Chisari, C., Creatini, I., Bonfiglio, L., Bergamasco, M., Rossi, B. & Carboncini, M. (2012). Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke. Journal of NeuroEngineering and Rehabilitation 9(1), 36. Retrieved from 10.1186/1743-0003-9-36

Gopura, R.A.R.C., Bandara, D.S.V., Kiguchi, K. & Mann, G.K.I. (2016). Developments in hardware systems of active upper-limb exoskeleton robots: A review. Robotics and Autonomous Systems 75, 203–220. Retrieved from 10.1016/j.robot.2015.10.001

Grimm, F., Walter, A., Spüler, M., Naros, G., Rosenstiel, W. & Gharabaghi, A. (2016). Hybrid Neuroprosthesis for the Upper Limb: Combining Brain-Controlled Neuromuscular Stimulation with a Multi-Joint Arm Exoskeleton. Frontiers in Neuroscience 10, 367. Retrieved from 10.3389/fnins.2016.00367

Harcum, S., Conroy, S. S., Boos, A., Ermer, E., Xu, H., Zhan, M., Chen, H., Whitall, J., Dimyan, M. A. & Wittenberg, G. F. (2019). Methods for an Investigation of Neurophysiological and Kinematic Predictors of Response to Upper Extremity Repetitive Task Practice in Chronic Stroke. Archives of Rehabilitation Research and Clinical Translation 1(3-4), 100024. Retrieved from 10.1016/j.arrct.2019.100024

He, B., Baxter, B., Edelman, B. J., Cline, C. C. & Ye, W. W. (2015). Noninvasive Brain-Computer Interfaces Based on Sensorimotor Rhythms. Proceedings of the IEEE 103(6), 907–925. Retrieved from 10.1109/jproc.2015.2407272

Ho, C. H., Triolo, R. J., Elias, A. L., Kilgore, K. L., DiMarco, A. F. & Bogie, K. (2014). Functional Electrical Stimulation and Spinal Cord Injury. Physical Medicine and Rehabilitation Clinics of North America 25, 631–654. Retrieved from 10.1016/j.pmr.2014.05.001

Jang, Y. Y., Kim, T. H. & Lee, B. H. (2016). Effects of Brain-Computer Interface-controlled Functional Electrical Stimulation Training on Shoulder Subluxation for Patients with Stroke: A Randomized Controlled Trial. Occup Ther Int 23(2), 175–185.

Kasuga, S., Matsushika, Y., Kasashima-Shindo, Y., Kamatani, D., Fujiwara, T., Liu, M. & Ushiba, J. (2015). Transcranial direct current stimulation enhances mu rhythm desynchronization during motor imagery that depends on handedness. Laterality: Asymmetries of Body, Brain and Cognition 20(4), 453–468. Retrieved from 10.1080/1357650x.2014.998679

Kim, G., Lim, S., Kim, H., Lee, B., Seo, S. & Cho, K. (2017). Is robot-assisted therapy effective in upper extremity recovery in early stage stroke? -a systematic literature review. Journal of Physical Therapy Science 29(6), 1108–1112.

Kim, H., Cho, S. & Lee, H. (2019). Effects of passive Bi-axial ankle stretching while walking on uneven terrains in older adults with chronic stroke. Journal of Biomechanics 89, 57–64.

Kim, T., Kim, S. & Lee, B. (2016). Effects of Action Observational Training Plus Brain-Computer Interface-Based Functional Electrical Stimulation on Paretic Arm Motor Recovery in Patient with Stroke: A Randomized Controlled Trial. Occup Ther Int 23(1), 39–47.

Kreilinger, A., Kaiser, V., Breitwieser, C., Williamson, J., Neuper, C. & Müller-Putz, G. R. (2012). Switching between Manual Control and Brain-Computer Interface Using Long Term and Short Term Quality Measures. Frontiers in Neuroscience 5, 147. Retrieved from 10.3389/fnins.2011.00147

Krucoff, M. O., Rahimpour, S., Slutzky, M. W., Edgerton, V. R. & Turner, D. A. (2016). Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation. Frontiers in Neuroscience 10, 584. Retrieved from 10.3389/fnins.2016.00584

Lange, G., Low, C. Y., Johar, K., Hanapiah, F. A. & Kamaruzaman, F. (2016). Classification of Electroencephalogram Data from Hand Grasp and Release Movements for BCI Controlled Prosthesis. Procedia Technology 26, 374–381. Retrieved from 10.1016/j.protcy.2016.08.048

Lazarou, I., Nikolopoulos, S., Petrantonakis, P. C., Kompatsiaris, I. & Tsolaki, M. (2018). EEG-Based Brain–Computer Interfaces for Communication and Rehabilitation of People with Motor Impairment: A Novel Approach of the 21st Century. Frontiers in Human Neuroscience 12, 14. Retrieved from 10.3389/fnhum.2018.00014

Louie, D. R. & Eng, J. J. (2016). Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review. Journal of NeuroEngineering and Rehabilitation 13(1), 53. Retrieved from 10.1186/s12984-016-0162-5

Lu, R.-R., Zheng, M.-X., Li, J., Gao, T.-H., Hua, X.-Y. & Liu, G. (2020). Motor imagery based brain-computer interface control of continuous passive motion for wrist extension recovery in chronic stroke patients. Neuroscience Letters 718, 134727.

Maier, M., Ballester, B. R. & Verschure, P. F. M. J. (2019). Principles of Neurorehabilitation After Stroke Based on Motor Learning and Brain Plasticity Mechanisms. Frontiers in systems neuroscience 13, 74.

Marquez-Chin, C. & Popovic, M. R. (2020). Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review. BioMedical Engineering OnLine 19(1), 34. Retrieved from 10.1186/s12938-020-00773-4

McConnell, A., Moioli, R., Brasil, F., Vallejo, M., Corne, D., Vargas, P. & Stokes, A. (2017). Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke. Journal of Rehabilitation Medicine 49(6), 449–460. Retrieved from 10.2340/16501977-2229

Mehrholz, J., Pohl, M., Platz, T., Kugler, J. & Elsner, B. (2015). Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database of Systematic Reviews (11) 6876. Retrieved from 10.1002/14651858.cd006876.pub4

Moineau, B., Marquez-Chin, C., Alizadeh-Meghrazi, M. & Popovic, M. R. (2019). Garments for functional electrical stimulation: Design and proofs of concept. Journal of Rehabilitation and Assistive Technologies Engineering 6, 205566831985434. Retrieved from 10.1177/2055668319854340

Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J. & Cushman, M. (2016). Heart Disease and Stroke Statistics-2016 Update: A Report From the. American Heart Association. Circulation 133(4), 38–360.

Pereira, J., Sburlea, A. I. & Müller-Putz, G. R. (2018). EEG patterns of self-paced movement imaginations towards externally-cued and internally-selected targets. Scientific Reports 8(1), 13394. Retrieved from 10.1038/s41598-018-31673-2

Prange, G. B., Kottink, A. I. R., Buurke, J. H., Eckhardt, M. M. E. M., van Keulen-Rouweler, B. J., Ribbers, G. M. & Rietman, J. S. (2015). The Effect of Arm Support Combined With Rehabilitation Games on Upper-Extremity Function in Subacute Stroke. Neurorehabilitation and Neural Repair 29(2), 174–182. Retrieved from 10.1177/1545968314535985

Ramos-Murguialday, A., Curado, M. R., Broetz, D., Yilmaz, Ö., Brasil, F. L., Liberati, G., Garcia-Cossio, E., Cho, W., Caria, A., Cohen, L. G. & Birbaumer, N. (2019). Brain-Machine Interface in Chronic Stroke: Randomized Trial Long-Term Follow-up. Neurorehabilitation and Neural Repair 33(3), 188–198. Retrieved from 10.1177/1545968319827573

Remsik, A., Young, B., Vermilyea, R., Kiekhoefer, L., Abrams, J., Evander Elmore, S., Schultz, P., Nair, V., Edwards, D., Williams, J. & Prabhakaran, V. (2016). A review of the progression and future implications of brain-computer interface therapies for restoration of distal upper extremity motor function after stroke. Expert Review of Medical Devices. Informa UK Limited 13, 445–454 Retrieved from

Rodgers, H., Bosomworth, H., Krebs, H. I., Van Wijck, F., Howel, D. & Wilson, N. (2019). Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. The Lancet 394, 51–62.

Ron-Angevin, R., Velasco-Álvarez, F., Fernández-Rodríguez, Á., Díaz-Estrella, A., Blanca-Mena, M. J. & Vizcaíno-Martín, F. J. (2017). Brain-Computer Interface application: auditory serial interface to control a two-class motor-imagery-based wheelchair. Journal of NeuroEngineering and Rehabilitation 14(1), 49. Retrieved from 10.1186/s12984-017-0261-y

Rong, W., Tong, K. Y., Hu, X. L. & Ho, N. S. K. (2012). Combined Electromyography(EMG)-driven robotic system with Functional Electrical Stimulation (FES) for rehabilitation. In 38th Annual Northeast Bioengineering Conference (NEBEC). 16–18.

Sale, P., Franceschini, M., Waldner, A. & Hesse, S. (2012). Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury. Eur J Phys Rehabil Med 48(1), 111–121.

Simonetti, D., Zollo, L., Papaleo, E., Carpino, G. & Guglielmelli, E. (2016). Multimodal adaptive interfaces for 3D robot-mediated upper limb neuro-rehabilitation: An overview of bio-cooperative systems. Robotics and Autonomous Systems 85, 62–72. Retrieved from 10.1016/j.robot.2016.08.012

Soekadar, S. R., Birbaumer, N., Slutzky, M. W. & Cohen, L. G. (2015). Brain–machine interfaces in neurorehabilitation of stroke. Neurobiology of Disease 83, 172–179. Retrieved from 10.1016/j.nbd.2014.11.025

Spüler, M., López-Larraz, E. & Ramos-Murguialday, A. (2018). On the design of EEG-based movement decoders for completely paralyzed stroke patients. Journal of NeuroEngineering and Rehabilitation 15(1), 110. Retrieved from 10.1186/s12984-018-0438-z

Teo, W.-P. & Chew, E. (2014). Is Motor-Imagery Brain-Computer Interface Feasible in Stroke Rehabilitation? PM&R 6(8), 723–728. Retrieved from 10.1016/j.pmrj.2014.01.006

Veerbeek, J. M., Langbroek-Amersfoort, A. C., van Wegen, E. E. H., Meskers, C. G. M. & Kwakkel, G. (2017). Effects of Robot-Assisted Therapy for the Upper Limb After Stroke. Neurorehabilitation and Neural Repair 31(2), 107–121. Retrieved from 10.1177/1545968316666957

Young, B. M., Nigogosyan, Z., Walton, L. M., Song, J., Nair, V. A. & Grogan, S. W. (2014). Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain-computer interface. Front Neuroeng. Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain-computer interface. Front Neuroeng 7, 26.

Yuan, H. & He, B. (2014). Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives. IEEE transactions on bio-medical engineering (5) 1425–1435.

Yue, Z., Zhang, X. & Wang, J. (2017). Hand Rehabilitation Robotics on Poststroke Motor Recovery. Behavioural Neurology 3908135.

Zhang, X., Yue, Z. & Wang, J. (2017). Robotics in Lower-Limb Rehabilitation after Stroke. Behav Neurol 3731802.

Zhou, Z., Meng, W., Ai, Q., Liu, Q. & Wu, X. (2013). Practical Velocity Tracking Control of a Parallel Robot Based on Fuzzy Adaptive Algorithm. Advances in Mechanical Engineering 5, 574896.



How to Cite

Farzaneh, M. M. (2021). MINI REVIEW: THE APPLICATION OF BRAIN-COMPUTER INTERFACES IN ROBOTIC THERAPY. International Journal of Engineering Science Technologies, 5(3), 9–19.