PROBABILISTIC FORECASTING OF CLIMATE EXTREMES USING EXTREME VALUE THEORY AND DEEP GENERATIVE MODELS

Authors

  • Chauhan Priyank Hasmukhbhai Pacific Academy of Higher Education & Research University,Udaipur(Rajasthan) https://orcid.org/0009-0002-6510-7469
  • Dr. Ritu Khanna Professor, Faculty of Engineering, Pacific University Udaipur pacific Academy of Higher Education & Research University,Udaipur(Rajasthan)

DOI:

https://doi.org/10.29121/ijoest.v9.i5.2025.710

Keywords:

Extreme Value Theory (Evt), Deep Generative Models, Climate Extremes, Return Level Estimation, Variational Autoencoders (Vae), Generative Adversarial Networks (Gan), Probabilistic Forecasting, Tail Modeling, Synthetic Data, Rare Event Simulation

Abstract

Accurate forecasting of climate extremes such as floods, heatwaves, and severe storms is vital for risk mitigation and climate resilience planning. Traditional statistical models often fail to capture the nonlinear dynamics and tail dependencies inherent in such events. This paper proposes a novel hybrid framework that integrates Extreme Value Theory (EVT) with Deep Generative Models (DGMs), specifically Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs), for probabilistic modeling and simulation of rare climate phenomena. EVT is employed to model the marginal distributions of extreme events using the Generalized Pareto and Generalized Extreme Value distributions. Meanwhile, DGMs learn latent representations from high-dimensional climate data and synthesize realistic, tail-aware samples. The proposed model captures both the statistical rigor of EVT and the expressive power of deep learning. Empirical evaluations are conducted using ERA5 reanalysis and satellite datasets, focusing on extreme precipitation and temperature anomalies across diverse regions. Results show that the hybrid EVT–DGM framework significantly improves tail risk estimation, return level prediction, and generative quality compared to conventional models. This approach provides a robust tool for data-driven climate risk forecasting under uncertainty.

Downloads

Download data is not yet available.

References

Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. In Proceedings of the 34th International Conference on Machine Learning (214-223).

Beirlant, J., Goegebeur, Y., Segers, J., & Teugels, J. (2004). Statistics of extremes: Theory and applications. Wiley. https://doi.org/10.1002/0470012382

Chen, Y., Wu, Z., & Huang, M. (2020). TailGAN: Generative Modeling for Extreme value Analysis. In Proceedings of the 37th International Conference on Machine Learning.

Climate Change 2023: Synthesis Report. (2023). Intergovernmental Panel on Climate Change (IPCC).

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer. https://doi.org/10.1007/978-1-4471-3675-0

Cooley, D., Nychka, D., & Naveau, P. (2007). Bayesian Spatial Modeling of Extreme Precipitation Return Levels. Journal of the American Statistical Association, 102(479), 824-840. https://doi.org/10.1198/016214506000000780

Cooley, D., Davis, R. A., & Naveau, P. (2012). A Survey of Spatial Extremes: Measuring and Modeling Spatial Dependence. Extremes, 15, 1-19.

Davison, A. C., & Smith, R. L. (1990). Models for Exceedances Over High Thresholds. Journal of the Royal Statistical Society: Series B (Methodological), 52(3), 393-442. https://doi.org/10.1111/j.2517-6161.1990.tb01796.x

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing Systems (27).

Ham, Y., Kim, J.-H., & Luo, J.-J. (2019). Deep Learning for Multi-Year ENSO Forecasts. Nature, 573, 568-572. https://doi.org/10.1038/s41586-019-1559-7

IPCC, Climate Change (2023). Synthesis Report, Intergovernmental Panel on Climate Change

Janke, D., Deneke, M., & Macke, A. (2021). Extreme Precipitation Modeling with VAE-EVT: A Generative Deep Learning Approach. Journal of Hydrology, 602.

Kingma, D. P., & Welling, M. (2014). Auto-Encoding Variational Bayes. In Proceedings of the International Conference on Learning Representations (ICLR).

Perkins-Kirkpatrick, E., & Lewis, S. E. (2020). Increasing Trends in Regional Heatwaves. Nature Communications, 11(1), 1-8. https://doi.org/10.1038/s41467-020-16970-7

Rasp, M., Dueben, P. D., Scher, S., Weyn, J. A., Mouatadid, S., & Thuerey, N. (2020). WeatherBench: A benchmark Dataset for Data-Driven Weather Forecasting. Journal of Advances in Modeling Earth Systems, 12(11), 4301-4312. https://doi.org/10.1029/2020MS002203

Scher, S., & Messori, G. (2020). Weather and Climate Forecasting with Neural Networks: Using GCMs as a Data Source. Climate Dynamics, 55(5-6), 689-704.

Smith, R. L. (1989). Extreme Value Analysis of Environmental Time Series. Statistical Science, 4(4), 367-393. https://doi.org/10.1214/ss/1177012400

Vandal, C., Mudigonda, M., Liu, F., Kang, S., Raskar, R., & Nemani, R. (2017). Generative adversarial networks for climate downscaling. In Proceedings of the IEEE International Conference on Big Data(317-326).

Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl, T., & Zhang, X. (2018). Future Climate Risk from Compound Events. Nature Climate Change, 8, 469-477. https://doi.org/10.1038/s41558-018-0156-3

Downloads

Published

2025-10-08

How to Cite

Hasmukhbhai, C. P., & Khanna, R. (2025). PROBABILISTIC FORECASTING OF CLIMATE EXTREMES USING EXTREME VALUE THEORY AND DEEP GENERATIVE MODELS. International Journal of Engineering Science Technologies, 9(5), 1–12. https://doi.org/10.29121/ijoest.v9.i5.2025.710