QUANTIFYING SRH RECOMBINATION IN GAAS PIN SOLAR CELLS

Authors

  • Aditya N. Roy Choudhury Independent Researcher, Kolkata, India

DOI:

https://doi.org/10.29121/ijoest.v9.i3.2025.703

Keywords:

Srh Recombination, Photocurrent, Gaas Solar Cells, Pin Solar Cells

Abstract

Charge recombination is known to decrease a solar cell’s efficiency. SRH recombination, which is always present in a solar cell, is, thus, a candidate about which knowledge must be extracted. SRH recombination affects the dark current, the photocurrent and, thus, the total current of a solar cell. To find the SRH recombination times, elaborate numerical simulations must be done and the experimental solar cell data must be curve fitted to the simulation results. This is a lengthy and detailed procedure. In this work, a simple and short method is proposed. A GaAs PIN solar cell is simulated and its photocurrent’s slope (vs. voltage) is seen to show a peak which decreases with decreasing recombination times. A plot is given, from which the recombination time can be easily read by knowing the photocurrent’s slope’s peak value. This peak value can be easily found from the solar cell’s experimentally measured data.

Downloads

Download data is not yet available.

References

Calado, P., Burkitt, D., Yao, Z., Troughton, J., Watson, T. M., Carnie, M. J., Telford, A. M., O’Regan, B. C., Nelson, J., & Barnes, P. R. F. (2019). Identifying Dominant Recombination Mechanisms in Perovskite Solar Cells by Measuring the Transient Ideality Factor. Physical Review Applied, 11(4), 044005. https://doi.org/10.1103/PhysRevApplied.11.044005

Carlson, D. E., & Wronski, C. R. (1976). Amorphous Silicon Solar Cell. Applied Physics Letters, 28(11), 671–673. https://doi.org/10.1063/1.88617

Dibb, G. F. A., Kirchartz, T., Credgington, D., Durrant, J. R., & Nelson, J. (2011). Analysis of the Relationship Between Linearity of Corrected Photocurrent and the Order of Recombination in Organic Solar Cells. Journal of Physical Chemistry Letters, 2(21), 2407–2411. https://doi.org/10.1021/jz201056b

Durganjali, C. S., Bethanabhotla, S., Kasina, S., & Radhika, D. S. (2020). Recent Developments and Future Advancements in Solar Panels Technology. Journal of Physics: Conference Series, 1495, 012018. https://doi.org/10.1088/1742-6596/1495/1/012018

Gogolin, R., & Harder, N. P. (2013). Trapping Behavior of Shockley-Read-Hall Recombination Centers in Silicon Solar Cells. Journal of Applied Physics, 114(6), 064504. https://doi.org/10.1063/1.4817681

Gray, J., Wang, X., Chavali, R. V. K., Sun, X., Kanti, A., & Wilcox, J. R. (2015). ADEPT 2.1.

Grover, S., Li, J. V., Young, D. L., Stradins, P., & Branz, H. M. (2013). Reformulation of Solar Cell Physics to Facilitate Experimental Separation of Recombination Pathways. Applied Physics Letters, 103(9), 093502. https://doi.org/10.1063/1.4820729

Hubin, J., & Shah, A. V. (1995). Effect of the Recombination Function on the Collection in a PIN Solar Cell. Philosophical Magazine B, 72(5), 589–599. https://doi.org/10.1080/01418639508237959

Kirchartz, T., & Rau, U. (2018). What Makes a Good Solar Cell? Advanced Energy Materials, 8(1), 1703385. https://doi.org/10.1002/aenm.201703385

Lee, T. D., & Ebong, A. U. (2017). A Review of Thin-Film Solar Cell Technologies and Challenges. Renewable and Sustainable Energy Reviews, 70, 1286–1297. https://doi.org/10.1016/j.rser.2016.12.028

Limpinsel, M., Wagenpfahl, A., Mingebach, M., Deibel, C., & Dyakonov, V. (2010). Photocurrent in Bulk Heterojunction Solar Cells. Physical Review B, 81(8), 085203. https://doi.org/10.1103/PhysRevB.81.085203

Liu, L., & Li, G. (2011). Investigation of Recombination Loss in Organic Solar Cells by Simulating Intensity-Dependent Current-Voltage Measurements. Solar Energy Materials & Solar Cells, 95(10), 2557–2562. https://doi.org/10.1016/j.solmat.2011.05.003

Nfaoui, M., & El-Hami, K. (2018). Extracting the Maximum Energy from Solar Panels. Energy Reports, 4, 536–545. https://doi.org/10.1016/j.egyr.2018.07.011

Ooi, Z. E., Jin, R., Huang, J., Loo, Y. F., Sellinger, A., & DeMello, J. C. (2008). On the Pseudo-Symmetric Current-Voltage Response of Bulk Heterojunction Solar Cells. Journal of Materials Chemistry, 18, 1644–1650. https://doi.org/10.1039/b718451a

Pawlikiewicz, A. H., & Guha, S. (1990). Numerical Modeling of an Amorphous-Silicon-Based p-i-n Solar Cell. IEEE Transactions on Electron Devices, 37(2), 403–409. https://doi.org/10.1109/16.46673

Pierret, R. F. (1996). Semiconductor device fundamentals. Addison-Wesley Publishing Company.

Roy Choudhury, A. N. (2025). Equations of a Solar Cell. International Journal of Engineering Science Technologies, 9(2), 32–43. https://doi.org/10.48550/arXiv.2103.03693

Ryu, S., Ha, N. Y., Ahn, Y. H., Park, J. Y., & Li, S. (2021). Light Intensity Dependence of Organic Solar Cell operation and Dominance Switching Between Shockley-Read-Hall and Bimolecular Recombination Losses. Scientific Reports, 11, 16781. https://doi.org/10.1038/s41598-021-96212-y

Sandberg, O. J., Kurpiers, J., Stolterfoht, M., Neher, D., Meredith, P., Shoaee, S., & Armin, A. (2020). On the question of the Need for a Built-In Potential in Perovskite Solar Cells. Advanced Material Interfaces, 7(20), 2000041. https://doi.org/10.1002/admi.202000041

Semiconductor Website. (n.d.). Gallium arsenide (GaAs).

Wehenkel, D. J., Koster, L. J. A., Wienk, M. M., & Janssen, R. A. J. (2012). Influence of Injected Charge Carriers on Photocurrents in Polymer Solar Cells. Physical Review B, 85(12), 125203. https://doi.org/10.1103/PhysRevB.85.125203

Wilson, G. M., Al-Jassim, M., Metzger, W. K., Glunz, S. W., Verlinden, P., Xiong, G., Mansfield, L. M., Stanbery, B. J., Zhu, K., & Yan, Y. (2020). The 2020 Photovoltaic Technologies Roadmap. Journal of Physics D: Applied Physics, 53, 493001. https://doi.org/10.1088/1361-6463/aba271

Zeiske, S., Sandberg, O. J., Zarrabi, N., Li, W., Meredith, P., & Armin, A. (2021). Direct Observation of Trap-Assisted Recombination in Organic Photovoltaic Devices. Nature Communications, 12, 3603. https://doi.org/10.1038/s41467-021-23830-x

Zhou, S., Sun, J., Zhou, C., & Deng, Z. (2013). Comparison of Recombination Models in Organic Bulk Heterojunction Solar Cells. Physica B: Condensed Matter, 415, 28–34. https://doi.org/10.1016/j.physb.2013.03.001

Downloads

Published

2025-06-03

How to Cite

Choudhury, A. N. R. (2025). QUANTIFYING SRH RECOMBINATION IN GAAS PIN SOLAR CELLS. International Journal of Engineering Science Technologies, 9(3), 60–68. https://doi.org/10.29121/ijoest.v9.i3.2025.703