LIGHTNING–METEOROLOGY RELATIONSHIPS OVER SRI LANKA AND INDONESIA: A MACHINE LEARNING APPROACH

Authors

  • Nandivada Umakanth Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune - 411008, India
  • Rajesh Gogineni Department of ECE, Dhanekula Institute of Engineering and Technology, Vijayawada–521139, India https://orcid.org/0000-0001-5812-0038
  • Kalyankar Madan Mohan Rao Department of CSE-AIML, MLR Institute of Technology, Hyderabad, Telangana-500043, India
  • Bollareddy Revanth Reddy Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune - 411008, India
  • Kondaveeti SivaKrishna Department of CSE-AIML, MLR Institute of Technology, Hyderabad, Telangana-500043, India https://orcid.org/0000-0001-5812-846X
  • Yarlagadda Ramakrishna Department of ECE, Dhanekula Institute of Engineering and Technology, Vijayawada–521139, India
  • Myla Chimpiri Rao Department of Physics, Andhra Loyola College, Vijayawada-520008, India https://orcid.org/0000-0001-9136-9679

DOI:

https://doi.org/10.29121/ijoest.v9.i3.2025.691

Keywords:

Lightning, Cloud, Regression, Model

Abstract

The relationship between lightning flashes (LF) and various meteorological parameters is analyzed using lightning data from 1995 to 2014. The meteorological parameters considered in this study include aerosol optical depth (AOD), precipitation (P), relative humidity (Rh), convective available potential energy (CAPE), effective cloud droplet size (CER), total precipitable water (TPW), cloud fraction (CF), cloud top temperature (CTT), Richardson number (RN), cloud ice water content (CIWC), and cloud liquid water content (CLWC). This study examines two regions with distinct climates: Sri Lanka (R1) and Indonesia (R2). Results show lower lightning activity in R1 (15.5 flashes/km²/year) than in R2 (21.8 flashes/km²/year), with both peaking in April. Furthermore, the study evaluates the effectiveness of different regression techniques in modeling lightning activity. The Support Vector (SV) regression model performs best for Sri Lanka, while the Random Forest (RF) regression model emerges as the most suitable approach for Indonesia.

Downloads

Download data is not yet available.

References

Aslar, A. K., Soran, A., Yildiz, Y., & Isik, Y. (2001). Epidemiology, Morbidity, Mortality, and Treatment of Lightning Injuries in A Turkish Burns Unit. International Journal of Clinical Practice, 55(8), 502–504. https://doi.org/10.1111/j.1742-1241.2001.tb11110.x

Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T., Goodman, S. J., Hall, J. M., Koshak, W. J., Mach, D. M., & Stewart, M. F. (2003). Global Frequency and Distribution of Lightning As Observed from Space By the Optical Transient Detector. Journal of Geophysical Research: Atmospheres, 108(D1), ACL-4. https://doi.org/10.1029/2002JD002347

Cummins, K. L., Wilson, J. G., & Eichenbaum, A. S. (2019). The Impact of Cloud-To-Ground Lightning Type on the Differences in Return Stroke Peak Current Over Land and Ocean. IEEE Access, 7, 174774–174781. https://doi.org/10.1109/ACCESS.2019.2956685

Dai, J., Wang, Y., Chen, L., Tao, L., Gu, J., Wang, J., Xu, X., Lin, H., & Gu, Y. (2009). A Comparison of Lightning Activity and Convective Indices Over Some Monsoon-Prone Areas of China. Atmospheric Research, 91(2–4), 438–452. https://doi.org/10.1016/j.atmosres.2008.08.002

DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H., Richardson, M. S., Eidhammer, T., & Rogers, D. (2010). Predicting Global Atmospheric Ice Nuclei Distributions and Their Impacts On Climate. Proceedings of the National Academy of Sciences, 107(25), 11217–11222. https://doi.org/10.1073/pnas.0910818107

Denov, B., Hidayat, S., & Zoro, R. (2022). Tropical Lightning Peak Current Measurement At West Java, Indonesia. In 2022 36th International Conference on Lightning Protection (ICLP) (pp. 364–368). IEEE. https://doi.org/10.1109/ICLP56858.2022.9942478

Denov, B., Hidayat, S., Suwarno, & Zoro, R. (2023). A Method To Obtain Lightning Peak Current in Indonesia. Energies, 16(17), 6342. https://doi.org/10.3390/en16176342

Dewan, A., Ongee, E. T., Rafiuddin, M., Rahman, M. M., & Mahmood, R. (2018). Lightning Activity Associated With Precipitation and Cape Over Bangladesh. International Journal of Climatology, 38(4), 1649–1660. https://doi.org/10.1002/joc.5286

Dowdy, A. J. (2016). Seasonal forecasting of Lightning and Thunderstorm Activity in Tropical and Temperate Regions of the World. Scientific Reports, 6, 20874. https://doi.org/10.1038/srep20874

Edirisinghe, M., & Maduranga, U. G. D. (2021). Distribution of Lightning Accidents in Sri Lanka from 1974 To 2019 Using the Desinventar Database. ISPRS International Journal of Geo-Information, 10(3), 117. https://doi.org/10.3390/ijgi10030117

Farquad, M. A. H., & Bose, I. (2012). Preprocessing Unbalanced Data Using Support Vector Machine. Decision Support Systems, 53(1), 226–233. https://doi.org/10.1016/j.dss.2012.01.016

Galanaki, E., Kotroni, V., Lagouvardos, K., & Argiriou, A. (2015). A Ten-Year Analysis of Cloud-To-Ground Lightning Activity Over the Eastern Mediterranean Region. Atmospheric Research, 166, 213–222. https://doi.org/10.1016/j.atmosres.2015.07.008

Grbić, R., Kurtagić, D., & Slišković, D. (2013). Stream Water Temperature Prediction Based on Gaussian Process Regression. Expert Systems with Applications, 40(18), 7407–7414. https://doi.org/10.1016/j.eswa.2013.06.077

Hamid, E. Y., Kawasaki, Z. I., & Mardiana, R. (2001). Impact of the 1997–98 El Niño Event on Lightning Activity Over Indonesia. Geophysical Research Letters, 28(1), 147–150. https://doi.org/10.1029/2000GL011374

Hashiguchi, H., Yamamoto, M. K., Yamamoto, M., Mori, S., Yamanaka, M. D., Carbone, R. E., & Tuttle, J. D. (2013). Cloud Episode Propagation Over the Indonesian Maritime Continent from 10 Years of Infrared Brightness Temperature Observations. Atmospheric Research, 120, 268–286. https://doi.org/10.1016/j.atmosres.2012.09.004

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., & Simmons, A. (2020). The ERA5 Global Reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803

Jayaratne, E. R., & Saunders, C. P. R. (1983). Charge on Ice Crystals In Laboratory Clouds. Journal of Geophysical Research: Oceans, 88(C9), 5494–5496. https://doi.org/10.1029/JC088iC09p05494

Jensen, J. D., Thurman, J., & Vincent, A. (2021). Lightning Injuries. In StatPearls. Publishing LLC.

Khan, M. W., Ahmad, S., Dahri, Z. H., Syed, Z., Ahmad, K., Khan, F., & Azmat, M. (2023). Development of High-Resolution Daily Gridded Precipitation and Temperature Dataset for Potohar Plateau of Indus Basin. Theoretical and Applied Climatology, 154(3), 1179–1201. https://doi.org/10.1007/s00704-023-04626-7

Kumar, M., Gromiha, M. M., & Raghava, G. P. S. (2008). Prediction of RNA Binding Sites in A Protein Using SVM and PSSM Profile. Proteins: Structure, Function, and Bioinformatics, 71(1), 189–194. https://doi.org/10.1002/prot.21677

Lal, D. M., Umakanth, N., Domkawale, M. A., Gopalakrishnan, V., Srivastava, M. K., & Pawar, S. D. (2024). Association of Lightning With LCL, EL, Humidity At 850 Mb and At 200 Mb During Various CAPE, Over Northern India. Science of The Total Environment, 915, 169947. https://doi.org/10.1016/j.scitotenv.2024.169947

Lin, G. F., & Chen, L. H. (2004). A Non-Linear Rainfall-Runoff Model Using Radial Basis Function Network. Journal of Hydrology, 289(1–4), 1–8. https://doi.org/10.1016/j.jhydrol.2003.10.015

Liou, Y. A., & Kar, S. K. (2010). Study of Cloud-To-Ground Lightning and Precipitation and Their Seasonal and Geographical Characteristics Over Taiwan. Atmospheric Research, 95(2–3), 115–122. https://doi.org/10.1016/j.atmosres.2009.08.016

Liyew, C. M., & Melese, H. A. (2021). Machine Learning Techniques To Predict Daily Rainfall Amount. Journal of Big Data, 8, 1–11. https://doi.org/10.1186/s40537-021-00545-4

Louf, V., Jakob, C., Protat, A., Bergemann, M., & Narsey, S. (2019). The Relationship of Cloud Number and Size With Their Large‐Scale Environment in Deep Tropical Convection. Geophysical Research Letters, 46(15), 9203–9212. https://doi.org/10.1029/2019GL083964

Maduranga, U. D., Edirisinghe, M., & Gamage, L. V. (2018). Annual Variation Trend of Lightning Flash Activities Over Sri Lanka. World Science News, 114, 256–264. https://doi.org/10.3390/ijgi12020067

Mansell, E. R., Ziegler, C. L., & Bruning, E. C. (2010). Simulated Electrification of A Small Thunderstorm With Two-Moment Bulk Microphysics. Journal of the Atmospheric Sciences, 67(1), 171–194. https://doi.org/10.1175/2009JAS2965.1

Mills, B., Unrau, D., Pentelow, L., & Spring, K. (2010). Assessment of Lightning-Related Damage and Disruption in Canada. Natural Hazards, 52, 481–499. https://doi.org/10.1007/s11069-009-9391-2

Mistovich, J. J., Krost, W. S., & Limmer, D. D. (2008). Beyond the Basics: Lightning-Strike Injuries. EMS Magazine, 37(3), 82–87.

Moncrieff, M. W., Miller, M. J. (1976). The Dynamics and Simulation of Tropical Cumulonimbus and Squall Lines. Quarterly Journal of the Royal Meteorological Society, 102(432), 373–394. https://doi.org/10.1002/qj.49710243208

Moron, V., Robertson, A. W., & Qian, J. H. (2010). Local Versus Regional-Scale Characteristics of Monsoon Onset and Post-Onset Rainfall Over Indonesia. Climate Dynamics, 34, 281–299. https://doi.org/10.1007/s00382-009-0547-2

Mukhopadhyay, P., Mahakur, M., & Singh, H. A. K. (2009). The Interaction of Large Scale and Mesoscale Environment Leading To Formation of Intense Thunderstorms Over Kolkata Part I: Doppler Radar And Satellite Observations. Journal of Earth System Science, 118, 441–466. https://doi.org/10.1007/s12040-009-0046-1

Murray, B. J., O'Sullivan, D., Atkinson, J. D., & Webb, M. E. (2012). Ice Nucleation By Particles Immersed in Supercooled Cloud Droplets. Chemical Society Reviews, 41(19), 6519–6554. https://doi.org/10.1039/C2CS35200A

Mushtaq, F., Lala, M. G. N., & Anand, A. (2018). Spatio-Temporal Variability of Lightning Activity Over J&K Region and Its Relationship With Topography, Vegetation Cover, and Absorbing Aerosol Index (AAI). Journal of Atmospheric and Solar-Terrestrial Physics, 179, 281–292. https://doi.org/10.1016/j.jastp.2018.08.011

Okafor, U. V. (2005). Lightning Injuries and Acute Renal Failure: A Review. Renal Failure, 27(2), 129–134. https://doi.org/10.1081/JDI-48216

Orville, R. E., Huffines, G. R. (1999). Lightning Ground Flash Measurements Over the Contiguous United States: 1995–97. Monthly Weather Review, 127(11), 2693–2703. https://doi.org/10.1175/1520-0493(1999)127<2693:LGFMOT>2.0.CO;2

Pawar, S. D., Lal, D. M., & Murugavel, P. (2012). Lightning Characteristics Over Central India During the Indian Summer Monsoon. Atmospheric Research, 106, 44–49. https://doi.org/10.1016/j.atmosres.2011.11.007

Price, C. (2009). Thunderstorms, Lightning, and Climate Change. In Springer Netherlands (pp. 521–535). https://doi.org/10.1007/978-1-4020-9079-0_24

Pruppacher, H. R., Klett, J. D., & Pruppacher, H. R. (2010). Historical Review. Microphysics of Clouds and Precipitation, 1–9. https://doi.org/10.1007/978-0-306-48100-0

Saha, U., Siingh, D., Kamra, A. K., Galanaki, E., Maitra, A., Singh, R. P., Singh, A. K., Chakraborty, S., & Singh, R. (2017). On the Association of Lightning Activity and Projected Change in Climate Over the Indian Subcontinent. Atmospheric Research, 183, 173–190. https://doi.org/10.1016/j.atmosres.2016.09.001

Saunders, C. P. R. (1993). A Review of Thunderstorm Electrification Processes. Journal of Applied Meteorology and Climatology, 32(4), 642–655. https://doi.org/10.1175/1520-0450(1993)032<0642:AROTEP>2.0.CO;2

Shubri, A. R., Vonnisa, M., & Marzuki, M. (2024). Influence of Aerosols on Lightning Activities in Java Island, Indonesia. Trends in Sciences, 21(2), 7214. https://doi.org/10.48048/tis.2024.7214

Shubri, A. R., Vonnisa, M., & Marzuki, M. (2024). Influence of Aerosols on Lightning Activities in Java Island, Indonesia. Trends in Sciences, 21(2), 7214–7214. https://doi.org/10.48048/tis.2024.7214

Siingh, D., Singh, R. P., Kumar, S., Dharmaraj, T., Singh, A. K., Singh, A. K., Patil, M. N., & Singh, S. (2015). Lightning and Middle Atmospheric Discharges in the Atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 134, 78–101. https://doi.org/10.1016/j.jastp.2015.10.001

Singh, O., Bhardwaj, P., & Singh, J. (2017). Distribution of Lightning Casualties Over Maharashtra, India. Journal of Indian Geophysical Union, 21(5), 415–424.

Sun, A. Y., Wang, D., & Xu, X. (2014). Monthly Streamflow Forecasting Using Gaussian Process Regression. Journal of Hydrology, 511, 72–81. https://doi.org/10.1016/j.jhydrol.2014.01.023

Takahashi, T. (1978). Riming Electrification As A Charge Generation Mechanism in Thunderstorms. Journal of Atmospheric Sciences, 35(8), 1536–1548. https://doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2

Thompson, R. L., Edwards, R., Hart, J. A., Elmore, K. L., & Markowski, P. (2003). Close Proximity Soundings Within Supercell Environments Obtained from the Rapid Update Cycle. Weather and Forecasting, 18(6), 1243–1261. https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2

Turman, B. N., Edgar, B. C. (1982). Global Lightning Distributions At Dawn and Dusk. Journal of Geophysical Research: Oceans, 87(C2), 1191–1206. https://doi.org/10.1029/JC087iC02p01191

Tyagi, A., Sikka, D. R., Goyal, S., & Bhowmick, M. (2012). A Satellite-Based Study of Pre-Monsoon Thunderstorms (Nor'westers) Over Eastern India and Their Organization Into Mesoscale Convective Complexes. Mausam, 63(1), 29–54. https://doi.org/10.54302/mausam.v63i1.1446

Umakanth, N., Chandrasekhar, A. V., Smitha, A. S. S., Vasantha, B., Rao, K. S., Koutavarapu, R., & Rao, M. C. (2024). Lightning Activity and Its Connection With Weather-Related Parameters Over Sri Lanka. Acta Geophysica, 1–21. https://doi.org/10.1007/s11600-024-01442-z

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory (334). https://doi.org/10.1007/978-1-4757-2440-0

Verma, S., Yadava, P. K., Lal, D. M., Mall, R. K., Kumar, H., & Payra, S. (2021). Role Of Lightning Nox In Ozone Formation: A Review. Pure and Applied Geophysics, 178, 1425–1443. https://doi.org/10.1007/s00024-021-02710-5

Weisman, M. L., Klemp, J. B. (1982). The Dependence of Numerically Simulated Convective Storms on Vertical Wind Shear and Buoyancy. Monthly Weather Review, 110(6), 504–520. https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2

Wilks, D. S. (2006). Statistical Methods in the Atmospheric Sciences (2nd ed.). Academic Press.

Williams, E. R., Sátori, G. (2004). Lightning, Thermodynamic, and Hydrological Comparison of the Two Tropical Continental Chimneys. Journal of Atmospheric and Solar-Terrestrial Physics, 66(13-14), 1213–1231. https://doi.org/10.1016/j.jastp.2004.05.015

Williams, E. R., Zhang, R., & Rydock, J. (1991). Mixed-Phase Microphysics And Cloud Electrification. Journal of Atmospheric Sciences, 48(19), 2195–2203. https://doi.org/10.1175/1520-0469(1991)048<2195:MPMACE>2.0.CO;2

Yadava, P. K., Soni, M., Verma, S., Kumar, H., Sharma, A., & Payra, S. (2020). The Major Lightning Regions and Associated Casualties Over India. Natural Hazards, 101, 217–229. https://doi.org/10.1007/s11069-020-03870-8

Zaikarina, H., Djuraidah, A., & Wigena, A. H. (2016). Lasso and Ridge Quantile Regression Using Cross-Validation To Estimate Extreme Rainfall. Global Journal of Pure and Applied Mathematics, 12(3), 3305–3314.

Zheng, D., Zhang, Y., Yao, W., Wang, F., Lyu, W., Meng, Q., Fan, X., Ma, Y., & Yang, J. (2020). Lightning and Deep Convective Activities Over the Tibetan Plateau. National Science Review, 7(3), 487–488. https://doi.org/10.1093/nsr/nwz182

Zipser, E. J. (2003). Some Views on "Hot Towers" After 50 Years of Tropical Field Programs and Two Years of TRMM Data. Meteorological Monographs, 29(51), 49–58. https://doi.org/10.1175/0065-9401(2003)029<0049:CSVOHT>2.0.CO;2

Zoro, R., Mefiardhi, R. (2005). Lightning Performance on Overhead Distribution Lines: Field Observation At West Java-Indonesia. In 2005 International Power Engineering Conference (pp. 1–205). IEEE. https://doi.org/10.1109/IPEC.2005.206906

Downloads

Published

2025-05-07

How to Cite

Umakanth, N., Gogineni, R., Madan Mohan Rao, K. ., Revanth Reddy, B., SivaKrishna, K., Ramakrishna, Y., & Rao, M. C. (2025). LIGHTNING–METEOROLOGY RELATIONSHIPS OVER SRI LANKA AND INDONESIA: A MACHINE LEARNING APPROACH. International Journal of Engineering Science Technologies, 9(3), 14–26. https://doi.org/10.29121/ijoest.v9.i3.2025.691