LOW-COST MONITORING OF AIR QUALITY IN HIGH-TRAFFIC URBAN AREAS OF PANAMA: A PRELIMINARY ASSESSMENT
DOI:
https://doi.org/10.29121/ijoest.v9.i3.2025.674Keywords:
Atmospheric Pollutants, Low-Cost Monitoring, High-Traffic Urban Areas, Air QualityAbstract
This study presents the results of atmospheric pollutant monitoring for PM₁₀, PM2.5, NO₂, and O₃ in two of the most densely populated areas of Panama. Data were collected using a low-cost Aeroqual 500 series device, which, given the limited air quality monitoring infrastructure in the country, serves as a practical tool for generating valuable information to raise awareness among citizens and local authorities. The levels of PM₁₀, PM2.5, and NO₂ were relatively low, whereas O₃ concentrations exceeded the thresholds established by organizations such as the USEPA (for comparative purposes only). The most critical sites identified include the Gran Estación de San Miguelito, where PM₁₀ levels reached up to 34 µg/m³, likely influenced by its location at the intersection of major traffic arteries (Transístmica and Tocumen). The UTP-Site 2 Tocumen University Extension, situated near a highway, recorded the highest PM₂.₅ levels at 10 µg/m³. Regarding NO₂, the highest concentrations were observed in Plaza Princesa de Gales, Panama Norte, but remained relatively low (39 ppb). Similarly, O₃ levels were elevated in Plaza Princesa de Gales, with observed values ranging from 0.066 to 122 ppm. Standard deviations suggest moderate variability in PM₁₀, PM2.5, and O₃ measurements, whereas NO₂ levels exhibited significant fluctuations. These findings underscore the considerable contribution of vehicular emissions to urban air pollution in Panama, particularly concerning the high O₃ levels. Further in-depth studies are needed to better understand these trends and their implications for air quality management.
Downloads
References
Abuelgasim, A., & Farahat, A. (2020). Investigations on PM10, PM2.5, and their Ratio over the Emirate of Abu Dhabi, United Arab Emirates. Earth Systems and Environment, 4(4), 763–775. https://doi.org/10.1007/s41748-020-00186-2
Aeroqual Series 200/300/500 User Guide. (n.d.). Aeroqual Support.
Air Sensor Guidebook. (2014). Clean Air Asia Learning Hub.
Aziz, H. A., Awang, N. R., Mohd Amin, M. F., & Mohamad Junaidi, N. F. (2020). Ground-level Ozone Fluctuational Characteristics within two Industrial Areas in Malaysia. IOP Conference Series: Earth and Environmental Science, 549(1). https://doi.org/10.1088/1755-1315/549/1/01200
Brilli, L., Berton, A., Carotenuto, F., Gioli, B., Gualtieri, G., Martelli, F., Profeti, S., Trombi, G., Dibari, C., Moriondo, M., Vagnoli, C., & Zaldei, A. (2020). Innovative low-cost Air Quality Stations as a Supporting Means for Road Traffic Regulations in Urban Areas. IOP Conference Series: Earth and Environmental Science, 489(1). https://doi.org/10.1088/1755-1315/489/1/012023
Cannistraro, G., Cannistraro, M., Cannistraro, A., & Galvagno, A. (2016). Analysis of Air Pollution in the Urban Center of Four Cities Sicilian. International Journal of Heat and Technology, 34(Special Issue 2), S219–S225. https://doi.org/10.18280/ijht.34sp0205
Duarte, A. L., Schneider, I. L., Artaxo, P., & Oliveira, M. L. S. (2022). Spatiotemporal Assessment of Particulate Matter (PM10 and PM2.5) and Ozone in a Caribbean Urban Coastal City. Geoscience Frontiers, 13(1). https://doi.org/10.1016/j.gsf.2021.101168
Haque, M. S., & Singh, R. B. (2017). Air Pollution and Human Health in Kolkata, India: A case Study. Climate, 5(4). https://doi.org/10.3390/cli5040077I
Inchaouh, M., Khomsi, K., & Tahiri, M. (2018). Ambient Air Quality Assessment in the Grand Casablanca area (Morocco): Impact of road traffic emissions for the 2013-2016 period. Energy and Earth Science, 1(1), 1. https://doi.org/10.22158/ees.v1n1p1
Instituto Nacional de Estadística y Censo (INEC). (n.d.).
Li, L., Zhao, Z., Wang, H., Wang, Y., Liu, N., Li, X., & Ma, Y. (2020). Concentrations of Four Major Air Pollutants Among Ecological Functional Zones in Shenyang, Northeast China. Atmosphere, 11(10). https://doi.org/10.3390/atmos11101070
Metodología para la Validación de Datos de Sensores de Bajo Costo, Suplementarios e Informativos No Reglamentarios. (n.d.).
Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., Bedini, A., Chai, F., Christensen, B., Dunbabin, M., Gao, J., Hagler, G. S. W., Jayaratne, R., Kumar, P., Lau, A. K. H., Louie, P. K. K., Mazaheri, M., Ning, Z., Motta, N., … Williams, R. (2018). Applications of low-cost Sensing Technologies for Air Quality Monitoring and Exposure Assessment: How far have they gone? Environment International, 116, 286–299. https://doi.org/10.1016/j.envint.2018.04.018
Murray, W., Wu, Q., Balanay, J. A. G., & Sousan, S. (2024). Assessment of PM2.5 Concentration at University Transit bus Stops Using Low-Cost Aerosol Monitors by Student Commuters. Sensors, 24(14). https://doi.org/10.3390/s24144520
National Ambient Air Quality Standards USEPA. (n.d.).
Prakash, J., Choudhary, S., Raliya, R., Chadha, T. S., Fang, J., George, M. P., & Biswas, P. (2021). Deployment of networked low-cost Sensors and Comparison to real-time Stationary Monitors in New Delhi. Journal of the Air and Waste Management Association, 71(11), 1347–1360. https://doi.org/10.1080/10962247.2021.1890276
Project IDDS22-055. (n.d.).
PurpleAir. (n.d.).
Resolución N° 021-24 de enero de 2023-Guías Global De Calidad Del Aire-World Health Organization. (n.d.).
Van Poppel, M., Schneider, P., Peters, J., Yatkin, S., Gerboles, M., Matheeussen, C., Bartonova, A., Davila, S., Signorini, M., Vogt, M., Dauge, F. R., Skaar, J. S., & Haugen, R. (2023). SensEURCity: A Multi-City Air Quality Dataset Collected for 2020/2021 using open low-cost sensor systems. Scientific Data, 10(1). https://doi.org/10.1038/s41597-023-02135-w
Williams, R., Duvall, R., Kilaru, V., Hagler, G., Hassinger, L., Benedict, K., Rice, J., Kaufman, A., Judge, R., Pierce, G., Allen, G., Bergin, M., Cohen, R. C., Fransioli, P., Gerboles, M., Habre, R., Hannigan, M., Jack, D., Louie, P., … Ning, Z. (2019). Deliberating Performance Targets Workshop: Potential Paths for Emerging PM2.5 and O3 air Sensor Progress. Atmospheric Environment: X, 2. https://doi.org/10.1016/j.aeaoa.2019.100031
World Health Organization. (2021). Global Air Quality Guidelines.
Yatkin, S., & Signorini. (n.d.). Guidance on Low-Cost Sensors Deployment for Air Quality Monitoring Experts Based on the AirSensEUR experience. https://doi.org/10.2760/14893
Zona Cero. (2023). Vehículos y Motos: El Parque Automotor Que Circula en Barranquilla. Zona Cero.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Cecilio Hernández Bethancourt, Alma Nubia Espinosa López, Ernesto Jesús Escobar Pineda, Jorge Enrique Olmos Guevara, Melisabel Del Carmen Muñoz Urriola

This work is licensed under a Creative Commons Attribution 4.0 International License.