MATHEMATICAL MODELING AND Z-CONTROL MECHANISM TO MITIGATE CHLAMYDIA TRACHOMATIS-INDUCED CONJUNCTIVITIS IN NEWBORNS
DOI:
https://doi.org/10.29121/ijoest.v9.i1.2025.660Keywords:
Mathematical Model, Z-control, Chlamydia Trachomatis, Neonatal Chlamydial Conjunctivitis, Numerical SimulationAbstract
This study analyzes a mathematical model employing a Z-control mechanism to prevent neonatal Chlamydial conjunctivitis in newborns of infected mothers. Chlamydia trachomatis transmission during delivery can lead to conjunctivitis and severe complications in the lungs and nasopharynx if untreated. The model, based on nonlinear differential equations, evaluates the basic reproduction number at the disease-free equilibrium point. Numerical simulations demonstrate that Z-control effectively stabilizes chaotic oscillations in the system, reducing the risk of conjunctivitis in newborns. The findings highlight that prenatal testing, early treatment of pregnant women, and newborn screening are critical for preventing and controlling Chlamydia transmission. The implementation of Z-control has proven effective in mitigating this epidemic, significantly reducing the incidence of neonatal Chlamydial conjunctivitis.
Downloads
References
Alzahrani, A. K., Alshomrani, A. S., Pal, N., & Samanta, S. (2018). Study of an Eco-Epidemiological Model with Z-type Control. Chaos, Solitons & Fractals, 113, 197-208. https://doi.org/10.1016/j.chaos.2018.06.012
CDC. Sexually Transmitted Disease Survelailnce, 2020. Atlanta, GA: Department of Health and Human Services; April 2022.
Centers for Disease Control and Prevention (CDC) Conjunctivitis in Newborn https://www.cdc.gov/conjunctivitis/newborns.html
"Chlamydia - CDC Fact Sheet". CDC. Nov 19, 2022. https://web.archive.org/web/20221229175531/https://www.cdc.gov/st d/chlam ydia/stdfact-chlamydia.htm (the original on 29 December 2022. Retrieved 28 December 2022.)
Darville, T. (2005). Chlamydia Trachomatis Infections in Neonates and Young Children. In Seminars in Pediatric Infectious Diseases (Vol. 16, No. 4, pp. 235-244). WB Saunders. https://doi.org/10.1053/j.spid.2005.06.004
Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. (1990). On the Definition and the Computation of the Basic Reproduction Ratio R 0 in Models for Infectious Diseases in Heterogeneous Populations. Journal of Mathematical Biology, 28(4), 365-382. https://doi.org/10.1007/BF00178324
Frommell, G. T., Rothenberg, R., Wang, S. P., McIntosh, K., Wintersgill, C., Allaman, J., & Orr, I. (1979). Chlamydial Infection of Mothers and their Infants. The Journal of Pediatrics, 95(1), 28-32. https://doi.org/10.1016/S0022-3476(79)80077-3
Haggerty, C. L., Gottlieb, S. L., Taylor, B. D., Low, N., Xu, F., & Ness, R. B. (2010). Risk of Sequelae After Chlamydia Trachomatis Genital Infection in Women. The Journal of infectious diseases, 201(Supplement_2), S134-S155. https://doi.org/10.1086/652395
Hammerschlag, M. R. (2011). Chlamydial and Gonococcal Infections in Infants and Children. Clinical Infectious Diseases, 53(suppl_3), S99-S102. https://doi.org/10.1093/cid/cir699
Hammerschlag, M. R., chandler, J. W., alexander, E. R., English, M., & koutsky, l. (1982). Longitudinal Studies on Chlamydial Infections in the First Year of life. The Pediatric Infectious Disease Journal, 1(6), 395-401. https://doi.org/10.1097/00006454-198211000-00007
Heggie, A. D., Lumicao, G. G., Stuart, L. A., & Gyves, M. T. (1981). Chlamydia Trachomatis Infection in Mothers and Infants: A Prospective Study. American journal of Diseases of Children, 135(6), 507-511. https://doi.org/10.1001/archpedi.1981.02130300007005
Korenromp, E. L., Sudaryo, M. K., de Vlas, S. J., Gray, R. H., Sewankambo, N. K., Serwadda, D., Wawer M. J.,& Habbema, J. D. F. (2002). What Proportion of Episodes of Gonorrhea and Chlamydia Becomes Symptomatic International Journal of STD & AIDS, 13(2), 91-101. https://doi.org/10.1258/0956462021924712
Kreisel, K. M., Spicknall, I. H., Gargano, J. W., Lewis, F. M., Lewis, R. M., Markowitz, L. E., Roberts, H., Johnson, A.S., Song, R., Cyr, S.B.S. & Weston, E.J.(2021). Sexually Transmitted Infections Among US Women and Men: Prevalence and Incidence Estimates, 2018. Sexually Transmitted Diseases, 48(4), 208-214. https://doi.org/10.1097/OLQ.0000000000001355
Lacitignola, D., Diele, F., Marangi, C., & Provenzale, A. (2016). On the Dynamics of a Generalized Predator-Prey System With Z-Type Control. Mathematical Biosciences, 280, 10-23. https://doi.org/10.1016/j.mbs.2016.07.011
McGregor, J. A., & French, J. I. (1991). Chlamydia Trachomatis Infection During Pregnancy. American Journal of Obstetrics and Gynecology, 164(6), 1782-1789. https://doi.org/10.1016/0002-9378(91)90560-E
Oakeshott, P., Kerry, S., Aghaizu, A., Atherton, H., Hay, S., Taylor-Robinson, D., Simms, I. & Hay, P. (2010). Randomized Controlled Trial of Screening for Chlamydia Trachomatis to Prevent Pelvic Inflammatory Disease: The POPI (prevention of pelvic infection) trial. BMJ, 340. https://doi.org/10.1136/bmj.c1642
Samanta, S. (2018). Study of an Epidemic Model with Z-type control. International Journal of Biomathematics, 11(07), 1850084. https://doi.org/10.1142/S1793524518500845
Schachter, J., Grossman, M., Sweet, R. L., Holt, J., Jordan, C., & Bishop, E. (1986). Prospective Study of Perinatal Transmission of Chlamydia Trachomatis. Jama, 255(24), 3374-3377. https://doi.org/10.1001/jama.1986.03370240044034
Zhang, Y., Yan, X., Liao, B., Zhang, Y., & Ding, Y. (2016). Z-type Control of Populations for Lotka-Volterra Model with Exponential Convergence. Mathematical Biosciences, 272, 15-23. https://doi.org/10.1016/j.mbs.2015.11.009
Zikic, A., Schünemann, H., Wi, T., Lincetto, O., Broutet, N., & Santesso, N. (2018). Treatment of Neonatal Chlamydial Conjunctivitis: a Systematic Review and Meta-Analysis. Journal of the Pediatric Infectious Diseases Society, 7(3), e107-e115. https://doi.org/10.1093/jpids/piy060
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nita H Shah, Jalpa N Vaghela, Ekta N. Jayswal

This work is licensed under a Creative Commons Attribution 4.0 International License.