THE EPIDEMIC CONTROL PROCESS, THE CORONA VIRUS, MATHEMATICAL MODELING

Authors

  • Sandy Sánchez Domínguez Faculty of Mathematics and Computation, U O, Brazil
  • Adolfo Fernández García Faculty of Mathematics and Computation, U O, Brazil
  • Antonio Iván Ruiz Chaveco University of the State of Amazonas, Brazil

DOI:

https://doi.org/10.29121/ijoest.v7.i1.2023.418

Keywords:

Coronavirus, Epidemic, Mathematical Model

Abstract

In the present work, a study is made of the development of epidemics, in particular the one referring to the epidemic transmitted by SAR CoV 2; a model is developed through a system of Differential Equations that simulates this process, the system is simplified, if it makes a qualitative study of the trajectories of the system giving conclusions regarding the hole behavior of the trajectories, thus proving control of the epidemic; a critical case is treated and an example is presented that responds to the conditions of the introduced critical case, graphically proving the conclusions demonstrated analytically.

Downloads

Download data is not yet available.

References

Alraddadi, B. M., Watson, J. T., Almarashi, A., Abedi, G. R., Turkistani, A., Sadran, M., Housa, A., Almazroa, M. A., Alraihan, N., Banjar, A., Albalawi, E., Alhindi, H., Choudhry, A. J., Meiman, J. G., Paczkowski, M., Curns, A., Mounts, A., Feikin, D. R., Marano, N., Madani, T. A. (2016). Risk Factors For Primary Middle East Respiratory Syndrome Coronavirus Illness In Humans, Saudi Arabia, 2014. Emerging Infectious Diseases, 22(1), 49-55. https://doi.org/10.3201/eid2201.151340.

Chaveco, A. I. R. and Others. (2016). Applications of Differential Equations In Mathematical Modeling. V.Um. CRV, 196.

Chaveco, A. I. R. and Others. (2018). Modeling of Various Processes. [Curitiba : Appris], 1, 320.

Earn, D. J. D., Rohani, P., Bolker, B. M., and Grenfell, B. T. (2000). A Simple Model For Complex Dynamical Transitions In Epidemics. Science, 287(5453), 667-670.

Esteva, L., and Vargas, C. (1998). Analysis of A Dengue Disease Transmission Model. Mathematical Biosciences, 150(2), 131-151. https://doi.org/10.1016/s0025-5564(98)10003-2.

Greenhalgh, D., and Das, R. (1992). Some Threshold and Stability Results for Epidemic Models With A Density Dependent Death Rate, Theoret. Population Biol., 42, 130-151.

Gripenberg, G. (1983). On A Nonlinear Integral Equation Modelling An Epidemic In An Age-Structured Population. Journal Für Die Reine Und Angewandte Mathematik, 341, 147-158. https://doi.org/10.1515/crll.1983.341.54.

Halloran, M. E., Cochi, S. L., Lieu, T. A., Wharton, M., and Fehrs, L. (1994). Theoretical Epidemiologic and Morbidity Effects of Routine Varicella Immunization of Preschool Children In The United States. American Journal of Epidemiology, 140(2), 81-104. https://doi.org/10.1093/oxfordjournals.aje.a117238.

Halloran, M. E., Cochi, S. L., Lieu, T. A., Wharton, M., and Fehrs, L. (1994). Theoretical Epidemiologic and Morbidity Effects of Routine Varicella Immunization of Preschool Children in The United States. American Journal of Epidemiology, 140(2), 81-104. https://doi.org/10.1093/oxfordjournals.aje.a117238.

Halloran, M. E., Watelet, L., and Struchiner, C. J. (1994). Epidemiologic Effects of Vaccines With Complex Direct Effects In An Age-Structured Population. Mathematical Biosciences. WATELET, 121(2), 193-225. https://doi.org/10.1016/0025-5564(94)90070-1.

Hamer, W. H. (1906). Epidemic Disease In England. Lancet, 1, 733-739. https://doi.org/10.1016/S0140-6736(01)80187-2

Hamer, W. H. (1906). Epidemic Disease In England: The Evidence of Variability and of Persistency of Type. Bedford Press.

Hethcote, H. W. (1976). Qualitative Analyses of Communicable Disease Models. Mathematical Biosciences, 28(3-4), 335-356. https://doi.org/10.1016/0025-5564(76)90132-2.

Hethcote, H. W. (1994). A Thousand and One Epidemic Models. Frontiers in Mathematical Biology. Springer, 504-515. https://doi.org/10.1007/978-3-642-50124-1_29.

Ivorra, B., Ferrández, M. R., Vela-Pérez, M., and Ramos, A. M. (2020). Mathematical Modeling of The Spread of The Coronavirus Disease 2019 (Covid-19) Tak Ing Into Account The Undetected Infections. The Case of China. Communications In Nonlinear Science and Numerical Simulation, 88. https://doi.org/10.1016/j.cnsns.2020.105303.

Lacort, M., Sánchez, S., and Ruiz, A. I. (2020). Coronavirus, A Challenge For Sciences, Mathematical Modeling. IOSR Journal of Mathematics, 16, 28-34.

Montero, C. L. A. (2020). "Covid 19 with Science in China".

Ramirez-Torres, E. E., Selva Castañeda, A. R., Rodríguez-Aldana, Y., Sánchez Domínguez, S., Valdés García, L. E., Palú-Orozco, A., Oliveros-Domínguez, E. R., Zamora-Matamoros, L., Labrada-Claro, R., Cobas-Batista, M., Sedal-Yanes, D., Soler-Nariño, O., Valdés-Sosa, P. A., Montijano, J. I., And Bergues Cabrales, L. E. (2020). Mathematical Modeling and Forecasting of COVID-19: Experience In Santiago De Cuba Province. Revista Mexicana De Física, 67, 123-136. https://doi.org/10.31349/RevMexFis.67.123.

Ruiz Aa, L. L. Mc., And Marténig, F. (2020). Rb, Sousa Vf, Andrade Fd, Lima Pe, Iglesiana, Lacortmh, Sánchez Sa, Ruiz A Ib. "Coronavirus, A Challenge For Sciences, Mathematicalmodeling". IOSR Journal of Mathematics, 16(3) Ser. I, 28-34.

Soto, E. Et Al. (2020). Model of Sexually Communicable Diseases With Homosexual Presence. IOSR Journal of Mathematics, 16, 01-06. Model of Sexually Communicable Diseases With Homosexual Presence.

Soto, E., Fernandes, N., Sánchez, S., Leão, L., Ribeiro, Z., Ferreira, R., and Ruiz, I. (2019). Models of Sexually Transmitted Diseases. European Journal of Engineering Research and Science, 4(10), 4-8. https://doi.org/10.24018/ejeng.2019.4.10.1543.

Zhao, S., and Chen, H. (2020). Modeling the epidemic dynamics and control of Covid-19 outbreak in china. Quantitative Biology, 8(1), 11-19. https://doi.org/10.1007/s40484-020-0199-0.

Downloads

Published

2023-01-18

How to Cite

Domínguez, S. S., García, A. F., & Ruiz Chaveco, A. I. (2023). THE EPIDEMIC CONTROL PROCESS, THE CORONA VIRUS, MATHEMATICAL MODELING. International Journal of Engineering Science Technologies, 7(1), 17–28. https://doi.org/10.29121/ijoest.v7.i1.2023.418