• Perez, J. C. Phd Maths § Computer Science Bordeaux University, RETIRED Interdisciplinary Researcher (IBM Emeritus, IBM European Research Center On Artificial Intelligence Montpellier), Bordeaux Metropole, France
  • Montagnier, L. Fondation Luc Montagnier Quai Gustave-Ador 62 1207 Genève, Switzerland
Keywords: COVID-19, Bats Coronaviruses, RNA Sequences


We are facing the worldwide invasion of a new coronavirus. This follows several limited outbreaks of related viruses in various locations in a recent past (SARS, MERS). Although the main current objective of researchers is to bring efficient therapeutic and preventive solutions to the global population, we need also to better understand the origin of the newly coronavirus-induced epidemic in order to avoid future outbreaks. The present molecular appraisal is to study by a bio-infomatic approach the facts relating to the virus and its
precursors. This article shows how 16 fragments (Env Pol and Integrase genes) from different strains, both diversified and very recent, of the HIV1, HIV2 and SIV retroviruses have high percentage of homology into parts of the genome of COVID_19. Moreover each of these elements is made of 18 or more nucleotides and therefore may have a function. They are called Exogenous Informative Elements (EIE).. Among these EIE, 12 are concentrated in a very small region of the COVID-19 genome, length less than 900 bases, i.e. less than 3% of the total length of this genome. In addition, these EIE are positioned in two functional genes of COVID-19: the orf1ab and S spike genes. Here are the two main facts which contribute to our hypothesis of a partially synthetic genome: A contiguous region representing 2.49% of the whole COVID-19 genome of which 40.99% is made up of 12 diverse fragments originating from various strains of HIV SIV retroviruses. Some of these 12 EIE appear concatenated. Notably, the retroviral part of these regions, which consists of 8 elements from various strains
of HIV1, HIV2 and SIV covers a length of 275 contiguous bases of COVID-19. The cumulative length of these 8 HIV/SIV elements represents 200 bases. Consequently, the HIV SIV density rate of this region of COVID-19 is 200/275 = 72.73%.


WHO-SARS, sa=t&source=web&rct=j&url= YufHk5tDoAhXU3oUKHSTwBuYQFjAWegQIBRAB&usg=AOvVaw0bFoEUPELafXU98baC4o2k

WHO-MERS, sa=t&source=web&rct=j&url= yL7kGXQn

Perez, J.C, 2020/02/13, Wuhan nCoV-2019 SARS Coronaviruses Genomics Fractal Metastructures Evolution and Origins, DO -DOI: 10.20944/preprints202002.0025.v2, Researchgate : 2019_SARS_Coronaviruses_Genomics_Fractal_Metastructures_Evolution_and_Origins DOI:

Lyons Weiler J., 2020, 1-30-2020, On the origins of the 2019 ncov virus wuhan china, wuhan-china/

Perez J.C, (2020). “WUHAN COVID-19 SYNTHETIC ORIGINS AND EVOLUTION.” International Journal DOI:

of Research - Granthaalayah, 8(2), 285-324.

Perez J.C, Codex biogenesis - Les 13 codes de l'ADN (French Edition) [Jean-Claude ... 2009); Language: French; ISBN-10: 2874340448; ISBN-13: 978-2874340444

Perez J.C, Deciphering Hidden DNA Meta-Codes -The Great Unification & Master Code of Biology. J Glycomics Lipidomics 5:131, 2015, doi: 10.4172/2153- 0637.1000131 DOI:

Perez, J.C. Six Fractal Codes of Biological Life:perspectives in Exobiology, Cancers Basic Research and Artificial Intelligence Biomimetism Decisions Making. Preprints 2018, 2018090139 (doi: 10.20944/preprints201809.0139.v1).

Land A.M. Et al, Human immunodeficiency virus (HIV) type 1 proviral hypermutation correlates with CD4 count in HIV-infected women from Kenya., J Virol. 2008 Aug;82(16):8172-82. doi: 10.1128/JVI.01115- 08. Epub 2008 Jun 11., DOI: 10.1128/JVI.01115-08 DOI:

Venkatesan P, Franck Alla Plummer, The Lancet Infectious diseases, April 2020, DOI:

DOI: , 3099(20)30188-2.pdf

Perez, J. Epigenetics Theoretical Limits of Synthetic Genomes: The Cases of Artificials Caulobacter (C. eth-2.0), Mycoplasma Mycoides (JCVI-Syn 1.0, JCVI-Syn 3.0 and JCVI_3A), E-coli and YEAST chr

XII. Preprints 2019, 2019070120 (doi:10.20944/preprints201907.0120.v1).

Zhou, P et al, 2020, A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579 (7798), 270-273 (2020), DOI: 10.1038/s41586-020-2012-7 DOI:

FISABIO, 2020, coronavirus.

Andersen, K.G., Rambaut, A., Lipkin, W.I. et al. The proximal origin of SARS-CoV-2. Nat Med (2020). DOI:

Prashant Pradhan et al, Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag, , This biorxiv preprint was withdrawn by the authors.

Yuanchen Ma et al., 2020-2-27, ACE2 shedding and furin abundance in target organs may influence the efficiency of SARS-CoV-2 ,

Xiaolu Tang, Changcheng Wu, Xiang Li, Yuhe Song, Xinmin Yao, Xinkai Wu, Yuange Duan, Hong Zhang, Yirong Wang, Zhaohui Qian, Jie Cui, Jian Lu, On the origin and continuing evolution of SARS-CoV-

, National Science Review, , nwaa036, DOI:

Lu, R et al., 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding The Lancet.

Wei Ji, et al, Homologous recombination within the spike glycoprotein of the newly identified coronavirus 2019-nCoV may boost cross-species transmission from snake to


Peng Zhou et al, Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin, BioRxiv, January 2020, DOI:

Leoz M, Feyertag F, Kfutwah A, Mauclère P, Lachenal G, et al. (2015) The Two-Phase Emergence of Non Pandemic HIV-1 Group O in Cameroon. PLOS Pathogens 11(8):

e1005029. DOI:

Hangping Yao, et al., Patient-derived mutations impact pathogenicity of SARS-CoV-2

medRxiv 2020.04.14.20060160; doi: . DOI:

D. B. T. Cox et al., RNA editing with CRISPR-Cas13 , Science 24 Nov 2017: Vol. 358, Issue 6366, pp. 1019-1027, DOI: 10.1126/science.aaq0180 DOI:

LaRinda A. Holland et al, An 81 nucleotide deletion in SARS-CoV-2 ORF7a identified from sentinel surveillance in Arizona (Jan-Mar 2020), Journal of Virology (2020). DOI: 10.1128/JVI.00711-20 DOI:

ue Wu Zhang et al, Structural similarity between HIV1 gp41 and SARS-CoV S2 proteins suggests an analogous membrane fusion mechanism May 2004Journal of Molecular Structure THEOCHEM 677(1):73- 76, DOI: 10.1016/j.theochem.2004.02.018 DOI:

Pilani et al, In silico comparison of spike protein-ACE2 binding affinities across species;significance for the possible origin of the SARS-CoV-2 virus,

Perez, j., & Montagnier, L. (2020, April 25). COVID-19, SARS and Bats Coronaviruses Genomes unexpected Exogeneous RNA Sequences. DOI:

Seong-Tshool Hong et al., The emergence of SARS-CoV-2 by an unusual genome

reconstitution, DOI 10.21203/

Zhang, M., Kaneko, I., Tsao, T. et al. A highly infectious Plasmodium yoelii parasite, bearing Plasmodium falciparum circumsporozoite protein. Malar J 15, 201 (2016). DOI:

F. Castro-Chavez, (June 2020), Anticovidian v.2: COVID-19: Hypothesis of the Lab Origin versus a Zoonotic

Event Which Can Also be of a Lab Origin, GJSFR (Submitted; to appear in: [ term=%22Castro-Chavez%20F%22])

Perez JC (2018) The Optimal Multi-Isotopic Atomic Code of Life: Perspectives in Astrobiology. Astrobiol Outreach 6: 165. doi: 10.4172/2332-2519.1000165 , multiisotopic-atomic-code-of-life-perspectives-in-astrobiology-2332-2519-1000166.pdf

Zhang et Al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity,

doi: DOI:

A Bauer & R. Sachez, Vivre au temps du Coronavirus, Cerf 2020, (ISBN : 978-2-204-14203-8),

Sorensen, B. et Al, Biovacc-19: A Candidate Vaccine for Covid-19 (SARS-CoV-2) Developed from Analysis of its General Method of Action for Infectivity, DOI: , Published online by Cambridge University Press: 02 June 2020.

How to Cite
Perez, J. C., & Montagnier, L. (2020). COVID-19, SARS AND BATS CORONAVIRUSES GENOMES PECULIAR HOMOLOGOUS RNA SEQUENCES. International Journal of Research -GRANTHAALAYAH, 8(7), 217-263.